[1]Akiyama, J. and Watanabe, M. (1987) Maximum induced forests of planar graphs. Graphs Combin. 3 201–202.

[2]Albertson, M. and Haas, R. (1998) A problem raised at the DIMACS Graph Coloring Week.

[3]Alon, N. (2003) Problems and results in extremal combinatorics I. Discrete Math. 273 31–53.

[4]Alon, N. (2008) Problems and results in extremal combinatorics II. Discrete Math. 308 4460–4472.

[5]Alon, N. and Krivelevich, M. (1997) Constructive bounds for a Ramsey-type problem. Graphs Combin. 13 217–225.

[6]Alon, N., Mubayi, D. and Thomas, R. (2001) Large induced forests in sparse graphs. J. Graph Theory 38 113–123.

[7]Balister, P., Lehel, J. and Schelp, R. H. (2006) Ramsey unsaturated and saturated graphs. J. Graph Theory 51 22–32.

[8]Beck, J. (1993) Achievement games and the probabilistic method. In Combinatorics: Paul Erdős is Eighty, Vol. 1, Bolyai Mathematical Society, pp. 51–78.

[9]Brown, T. C., Chung, F. R. K., Erdős, P. and Graham, R. L. (1985) Quantitative forms of a theorem of Hilbert. J. Combin. Theory Ser. A 38 210–216.

[10]Butterfield, J., Grauman, T., Kinnersley, W. B., Milans, K. G., Stocker, C. and West, D. B. (2011) On-line Ramsey theory for bounded degree graphs. Electron. J. Combin. 18 #136.

[11]Cavers, M. and Verstraëte, J. (2008) Clique partitions of complements of forests and bounded degree graphs. Discrete Math. 308 2011–2017.

[12]Chang, Y. (1996) A bound for Wilson's theorem III. J. Combin. Des. 4 83–93.

[13]Conlon, D. (2009) Hypergraph packing and sparse bipartite Ramsey numbers. Combin. Probab. Comput. 18 913–923.

[14]Conlon, D. (2009/10) On-line Ramsey numbers. SIAM J. Discrete Math. 23 1954–1963.

[15]Conlon, D. (2013) The Ramsey number of dense graphs. Bull. London Math. Soc. 45 483–496.

[16]Conlon, D., Fox, J. and Sudakov, B. (2010) Hypergraph Ramsey numbers. J. Amer. Math. Soc. 23 247–266.

[17]Dudek, A. and Mubayi, D. On generalized Ramsey numbers for 3-uniform hypergraphs. *J. Graph Theory*. Preprint.

[18]Dudek, A., Retter, T. and Rödl, V. On generalized Ramsey numbers of Erdős and Rogers. Preprint.

[19]Dudek, A. and Rödl, V. (2011) On *K*_{s}-free subgraphs in *K*_{s+k}-free graphs and vertex Folkman numbers. Combinatorica 31 39–53.

[20]Erdős, P. and Gallai, T. (1961) On the minimal number of vertices representing the edges of a graph. Publ. Math. Inst. Hungar. Acad. Sci. 6 181–202.

[21]Erdős, P. and Rado, R. (1952) Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. Soc. 3 417–439.

[22]Erdős, P. and Rogers, C. A. (1962) The construction of certain graphs. Canad. J. Math. 14 702–707.

[23]Fox, J. and Sudakov, B. (2009) Density theorems for bipartite graphs and related Ramsey-type results. Combinatorica 29 153–196.

[24]Friedgut, E., Kohayakawa, Y., Rödl, V., Ruciński, A. and Tetali, P. (2003) Ramsey games against a one-armed bandit. Combin. Probab. Comput. 12 515–545.

[25]Gregory, D. A., McGuinness, S. and Wallis, W. (1986) Clique partitions of the cocktail party graph. Discrete Math. 59 267–273.

[26]Grytczuk, J. A., Hałuszczak, M. and Kierstead, H. A. (2004) On-line Ramsey theory. Electron. J. Combin. 11 #57.

[27]Gunderson, D. S., Rödl, V. and Sidorenko, A. (1999) Extremal problems for sets forming Boolean algebras and complete partite hypergraphs. J. Combin. Theory Ser. A 88 342–367.

[28]Hegyvári, N. (1996) On representation problems in the additive number theory. Acta Math. Hungar. 72 35–44.

[29]Hegyvári, N. (1999) On the dimension of the Hilbert cubes. J. Number Theory 77 326–330.

[30]Hilbert, D. (1892) Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J. Reine Angew. Math. 110 104–129.

[31]Kierstead, H. A. and Konjevod, G. (2009) Coloring number and on-line Ramsey theory for graphs and hypergraphs. Combinatorica 29 49–64.

[32]Kowalik, Ł, Lužar, B. and Škrekovski, R. (2010) An improved bound on the largest induced forests for triangle-free planar graphs. Discrete Math. Theor. Comput. Sci. 12 87–100.

[33]Krivelevich, M. (1994) *K*^{s}-free graphs without large *K*^{r}-free subgraphs. Combin. Probab. Comput. 3 349–354.

[34]Krivelevich, M. (1995) Bounding Ramsey numbers through large deviation inequalities. Random Struct. Alg. 7 145–155.

[35]Kurek, A. and Ruciński, A. (2005) Two variants of the size Ramsey number. Discuss. Math. Graph Theory 25 141–149.

[36]Marciniszyn, M., Spöhel, R. and Steger, A. (2009) Online Ramsey games in random graphs. Combin. Probab. Comput. 18 271–300.

[37]Marciniszyn, M., Spöhel, R. and Steger, A. (2009) Upper bounds for online Ramsey games in random graphs. Combin. Probab. Comput. 18 259–270.

[38]Nguyen, H. and Vu, V. (2011) Optimal inverse Littlewood–Offord theorems. Adv. Math. 226 5298–5319.

[39]Orlin, J. (1977) Contentment in graph theory. Indag. Math. 39 406–424.

[40]Ramsey, F. P. (1930) On a problem of formal logic. Proc. London Math. Soc. Ser. 2 30 264–286.

[41]Salavatipour, M. R. (2006) Large induced forests in triangle-free planar graphs. Graphs Combin. 22 113–126.

[42]Shearer, J. B. (1995) On the independence number of sparse graphs. Random Struct. Alg. 7 269–271.

[43]Skokan, J. and Stein, M. Cycles are strongly Ramsey-unsaturated. *Combin. Probab. Comput*., to appear.

[44]Sudakov, B. (2005) A new lower bound for a Ramsey-type problem. Combinatorica 25 487–498.

[45]Sudakov, B. (2005) Large *K*_{r}-free subgraphs in *K*_{s}-free graphs and some other Ramsey-type problems. Random Struct. Alg. 26 253–265.

[46]Sudakov, B. (2011) A conjecture of Erdős on graph Ramsey numbers. Adv. Math. 227 601–609.

[47]Szemerédi, E. (1969) On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hungar. 20 199–245.

[48]Tao, T. and Vu, V. (2009) Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. of Math. 169 595–632.

[49]Tao, T. and Vu, V. (2010) A sharp inverse Littlewood–Offord theorem. Random Struct. Alg. 37 525–539.

[50]Wallis, W. D. (1985) Clique partitions of the complement of a one-factor. Congr. Numer. 46 317–319.

[51]Wallis, W. D. (1990) Finite planes and clique partitions. Contemp. Math. 111 279–285.

[52]Wilson, R. M. (1974) Constructions and uses of pairwise balanced designs. In Combinatorics: Proc. NATO Advanced Study Inst., Breukelen, 1974, Part 1: *Theory of Designs, Finite Geometry and Coding Theory*, No. 55 of Math. Centre Tracts, Math Centrum, Amsterdam, pp. 18–41.

[53]Wolfovitz, G.*K* _{4}-free graphs without large induced triangle-free subgraphs. *Combinatorica*, to appear.