Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:12:15.625Z Has data issue: false hasContentIssue false

Uniqueness of Preduals for Spaces of Continuous Vector Functions

Published online by Cambridge University Press:  20 November 2018

Michael Cambern
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 93106
Peter Greim
Affiliation:
Department of Mathematics, The Citadel, Charleston, SC 29409
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A. Grothendieck has shown that if the space C(X) is a Banach dual then X is hyperstonean; moreover, the predual of C(X) is strongly unique. In this article we give a vector analogue of Grothendieck's result. We show that if E* is a reflexive Banach space and C(X, (E*, σ*)) denotes the space of continuous functions on X to E* when E* is provided with its weak* (= weak) topology then the full content of Grothendieck's theorem for C(X) can be established for C(X,(E*,σ*)). This improves a result previously obtained for the case in which E* is Hilbert space.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Behrends, E., M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979.Google Scholar
2. Behrends, E., On the geometry of spaces of C0K-valued operators, Studia Math., 90 (1988), 135— 151.Google Scholar
3. Behrends, E. et al., LP -structure in real Banach spaces, Lecture Notes in Mathematics 613, Springer- Verlag, Berlin-Heidelberg-New York, 1977.Google Scholar
4. Cambern, M. and P. Greim, The dual of a space of vector measures, Math. Z. 180 (1982), 373378.Google Scholar
5. Cambern, M. and P. Greim, Spaces of continuous vector functions as duals, Canad. Math. Bull., 31 (1988), 70-78.Google Scholar
6. Cembranos, P., C﹛K,E) contains a complemented copy of CQ, Proc. Amer. Math. Soc. 91 (1984), 556558. Google Scholar
7. Diestel, J. and J. J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc, Providence, R.I., 1977.Google Scholar
8. Dixmier, J., Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151182. Google Scholar
9. Dunford, N. and Schwartz, J. T., Linear operators, Part I, Interscience, New York, 1958.Google Scholar
10. Godefroy, G., Parties admissibles d'un espace de Banach; applications, Ann. Scient. Ec. Norm. Sup. 16, 4 (1983), 109122. Google Scholar
11. Godefroy, G. and M. Talagrand, Nouvelles classes d'espaces de Banach à predual unique, Séminaire d'Ana. Fonct. de l'Ec. Polytech., expose no. 6, 1980/1981.Google Scholar
12. Greim, P., Banach spaces with the Ll -Banach-Stone property, Trans. Amer. Math. Soc. 287 (1985), 819828. Google Scholar
13. Grothendieck, A., Une caractérisation vectorielle métrique des espaces L1, Canad. J. Math. 7 (1955), 552561. Google Scholar
14. Kakutani, S., Concrete representation of abstract M spaces, Ann. of Math. (2) 42 (1941), 9941024. Google Scholar
15. Lacey, H. E., The isometrical theory of classical Banach spaces, Springer-Verlag, Berlin-Heidelberg- New York, 1974.Google Scholar
16. Lindenstrauss, J. and Tzafiri, L., Classical Banach Spaces II, Springer-Verlag, Berlin-New York, 1979.Google Scholar
17. S, T. S.. R. K. Rao, A note on the Rn,k property for L1 (μ,E), Canad. Math. Bull., (in this issue).Google Scholar
18. Singer, I., Linear functionals on the space of continuous mappings of a compact space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), 301315. (Russian).Google Scholar
19. Talagrand, M., Weak Cauchy sequences in L1 (E), Amer. J. Math. 106 (1984), 703724. Google Scholar