Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T13:06:44.627Z Has data issue: false hasContentIssue false

On Semisimple Hopf Algebras of Dimension pqn

Published online by Cambridge University Press:  20 November 2018

Li Dai
Affiliation:
College of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China e-mail: daili1980@njau.edu.cndongjc@njau.edu.cn
Jingcheng Dong
Affiliation:
College of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China e-mail: daili1980@njau.edu.cndongjc@njau.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $p$, $q$ be prime numbers with ${{p}^{2}}\,<\,q,\,n\,\in \,\mathbb{N}$, and $H$ a semisimple Hopf algebra of dimension $p{{q}^{n}}$ over an algebraically closed field of characteristic 0. This paper proves that $H$ must possess one of the following two structures: (1) $H$ is semisolvable; (2) $H$ is a Radford biproduct $R\#kG$, where $kG$ is the group algebra of group $G$ of order $p$ and $R$ is a semisimple Yetter–Drinfeld Hopf algebra in $_{kG}^{kG}y\mathcal{D}$ of dimension ${{q}^{n}}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

Footnotes

This work was partially supported by the NSF of China (11201231), the China Postdoctoral Science Foundation (2012M511643), the Jiangsu Planned Projects for Postdoctoral Research Funds (1102041C), and the Agricultural Machinery Bureau Foundation of Jiangsu Province (GXZ11003).

References

[1] Dong, J. and Wang, S., On semisimple Hopf algebras of dimension 2q3. J. Algebra, 375 (2013, no. 1, 97108.http://dx.doi.org/10.1016/j.jalgebra.2012.11.021 CrossRefGoogle Scholar
[2] Etingof, P. and Gelaki, S., Semisimple Hopf algebras of dimension pq are trivial. J. Algebra 210 (1998, no. 2, 664669.http://dx.doi.org/10.1006/jabr.1998.7568 CrossRefGoogle Scholar
[3] Etingof, P. and Gelaki, S., Some properties of finite-dimensional semisimple Hopf algebras. Math. Res. Lett. 5 (1998, no. 12, 191197.http://dx.doi.org/10.4310/MRL.1998.v5.n2.a5 CrossRefGoogle Scholar
[4] Etingof, P., Nikshych, D., and Ostrik, V., Weakly group-theoretical and solvable fusion categories. Adv. Math. 226 (2011, no. 1, 176505.http://dx.doi.org/10.1016/j.aim.2010.06.009 CrossRefGoogle Scholar
[5] Majid, S., Doubles of quasitriangular Hopf algebras. Comm. Algebra 19 (1991, no. 11, 30613073.http://dx.doi.org/10.1080/00927879108824306 CrossRefGoogle Scholar
[6] Masuoka, A., The pn theorem for semisimple Hopf algebras. Proc. Amer. Math. Soc. 124 (1996, no. 3, 735737.http://dx.doi.org/10.1090/S0002-9939-96-03147-4 CrossRefGoogle Scholar
[7] Masuoka, A., Self-dual Hopf algebras of dimension p3 obtained by extension. J. Algebra 178 (1995, no. 3, 791806.http://dx.doi.org/10.1006/jabr.1995.1378 CrossRefGoogle Scholar
[8] Montgomery, S. and Witherspoon, S., Irreducible representations of crossed products. J. Pure Appl. Algebra 129 (1998, no. 3, 315326.http://dx.doi.org/10.1016/S0022-4049?(9700077-7 CrossRefGoogle Scholar
[9] Montgomery, S., Hopf algebras and their actions on rings. CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, Providence, RI, 1993.Google Scholar
[10] Natale, S., Semisolvability of semisimple Hopf algebras of low dimension. Mem. Amer. Math. Soc. 186 (2007, no. 874.Google Scholar
[11] Nichols, W. D. and Richmond, M. B., The Grothendieck group of a Hopf algebra. J. Pure Appl. Algebra 106 (1996, no. 3, 297306.http://dx.doi.org/10.1016/0022-4049(9500023-2) CrossRefGoogle Scholar
[12] Nichols, W. D. and Zoeller, M. B., A Hopf algebra freeness theorem. Amer. J. Math. 111 (1989, no. 2, 381385.http://dx.doi.org/10.2307/2374514 CrossRefGoogle Scholar
[13] Radford, D. E., The structure of Hopf algebras with a projection. J. Algebra 92 (1985, no. 2, 322347. http://dx.doi.org/10.1016/0021-8693(8590124-3) CrossRefGoogle Scholar
[14] Radford, D. E., Minimal quasitriangular Hopf algebras. J. Algebra 157 (1993, no. 2, 285315.http://dx.doi.org/10.1006/jabr.1993.1102 CrossRefGoogle Scholar
[15] Schneider, H.-J., Normal basis and transitivity of crossed products for Hopf algebras. J. Algebra 152 (1992, no. 2, 289312.http://dx.doi.org/10.1016/0021-8693(92)90034-J CrossRefGoogle Scholar
[16] Sommerhäuser, Y., Yetter–Drinfeld Hopf algebras over groups of prime order. Lectures Notes in Mathematics, 1789, Springer, 2002.Google Scholar
[17] Zhu, Y., Hopf algebras of prime dimension. Int. Math. Res. Notices 1994 (1994, no. 1, 5359.http://dx.doi.org/10.1155/S1073792894000073 CrossRefGoogle Scholar