Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T15:11:56.312Z Has data issue: false hasContentIssue false

Réapprendre à voir le monde : Rééduquer les personnes atteintes de dégénérescence maculaire en exploitant les capacités perceptives et cognitives de la vision périphérique

Published online by Cambridge University Press:  31 March 2010

Guillaume Giraudet*
Affiliation:
Centre Recherche & Développement de la société Essilor
Christian Corbé
Affiliation:
L'Association Représentative des Initiatives en basse Vision Université Paris V
Corinne Roumes
Affiliation:
l'Institut de médecine aérospatiale du Service de santé des armées
*
Les demandes de tirés-à-part doivent être addressées à : / Requests for offprints should be sent to: Guillaume Giraudet, Essilor International–R&D, Dépt Système Visuel et Design, 57 av de Condé, 94106 Saint Maur, France. (giraudeg@essilor.fr)

Abstract

Age-related macular degeneration (ARMD) is a frequent cause of vision loss among people over age of 60. It is an aging process involving a progressive degradation of the central retina. It does not induce total blindness, since it does not affect the peripheral vision. Nonetheless, it makes difficult to read, drive, and perform all daily activities requiring fine details perception. Low-vision care consists in inducing an eccentric fixation so that relevant visual targets impact an unaffected retinal locus. It is necessary but not sufficient to enhance visual extraction. The present work aims to draw the attention of low-vision professionals to the necessity of developing new re-education tools. Beyond the perceptual re-education linked to an optimization of visual information extraction, a cognitive re-education should also be provided in order to enhance the interpretation processes. Indeed, the spatial-frequency properties of the visual world no longer match patient perceptual habits. The visually impaired person has to learn again to use these new sensory data in an optimal way. Contextual information can be a precious help in this learning process. An experimental study involving young people provides elements for another method of low-vision care, in terms of visual cognitive re-education.

Résumé

La Dégénérescence maculaire liée à l'âge (DMLA), cause trés fréquente d'altération de la vision, est un processus de vieillissement provoquant une dégradation progressive de la rétine centrale. Elle ne provoque jamais de cécité totale puisque la vision périphérique demeure fonctionnelle. Néanmoins, elle perturbe sensiblement la lecture, la conduite et toutes les tâches de la vie courante nécessitant une perception des détails fins. La prise en charge du malvoyant consiste à provoquer une fixation excentrée de façon à ce que les cibles visuelles se projettent sur des zones rétiniennes saines. Cette amélioration de la prise d'information est nécessaire mais pas suffisante. l'objectif du présent article est d'attirer l'attention des professionnels de la malvoyance sur la nécessité de faire évoluer les outils de rééducation pour proposer, au-delà de la rééducation «perceptive» liée à l'optimisation de l'extraction de l'information, une rééducation «cognitive» qui aurait trait à l'amélioration de l'interprétation des ces nouvelles données sensorielles. En effet, les propriétés fréquentielles de l'environnement ne correspondent plus aux habitudes visuelles du patient. Il faut donc lui réapprendre à utiliser de façon optimale ces nouvelles informations. Le contexte spatial dans lequel se trouve l'élément recherché pourrait à ce niveau constituer une aide précieuse. Une étude expérimentale sur des sujets jeunes donne des voies d'amélioration de la prise en charge du malvoyant dans le sens d'une rééducation visuelle cognitive.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Attneave, F. (1954). Informational aspects of visual perception. Psychological Review, 61, 183193.CrossRefGoogle ScholarPubMed
Biederman, I. (1972). Perceiving real-world scenes. Science, 177, 7780.CrossRefGoogle ScholarPubMed
Bonnet, C. (1988). La perception visuelle des formes et du mouvement. Intellectica, 5, 5787.Google Scholar
Bonnet, C. (1995). Processus cognitifs dans la perception: la connaissance perceptive. Revue de Neurologie, 151, 442450.Google ScholarPubMed
Bowers, A.R., Woods, R.L. et Peli, E. (2004). Preferred retinal locus and reading rate with four dynamic text presentation formats. Optometry and Vision Science, 81, 205213.CrossRefGoogle ScholarPubMed
Bressler, N.M., Bressler, S.B. et Fine, S.L. (1988). Age-related macular degenreration. Survey in Ophthalmology, 32, 375413.CrossRefGoogle Scholar
Brown, B., Zadnick, K., Bailey, I.L. et Colenbrander, A. (1984). Effect of luminance, contrast, and eccentricity on visual acuity in senile macular degeneration. American Journal of Optometry and Physiological Optics, 61, 265270.CrossRefGoogle ScholarPubMed
Buser, P. et Imbert, M. (1987). Neurophysiologie fonctionnelle, volume, 4. Paris: Herman.Google Scholar
Carr, T.H. et Bacharach, V.R. (1976). Perceptual tuning and conscious attention: systems of input relation in visual information processing. Cognition, 4, 281302.CrossRefGoogle Scholar
Corbé, C., Dauxerre, C., Le Bail, B. et Delhoste, B. (2000). Basse vision et malvoyance, la prise en charge adaptative. Points de Vue, 43, 412.Google Scholar
Crossland, M.D., Culham, L.E. et Rubin, G.S. (2004). Fixation stability and reading speed in patients with newly developed macular disease. Ophthalmic and Physiological Optics, 24, 327333.CrossRefGoogle ScholarPubMed
Cummings, R.W., et Whittaker, S.G. (1985). Development of eccentric fixation following loss of macular vision. Investigative Ophthalmology and Visual Science, 26 (Suppl.), 216.Google Scholar
Cummings, R.W., Whittaker, S.G., Watson, G.R. et Budd, J.M. (1985). Scanning characters and reading with a central scotoma. American Journal of Optometry and Physiological Optics, 62, 833843.CrossRefGoogle ScholarPubMed
Déruaz, A., Whatham, A.R., Mermoud, C. et Safran, A.B. (2002). Reading with multiple preferred retinal loci: implications for training a more efficient reading strategy. Vision Research, 42, 29472957.CrossRefGoogle ScholarPubMed
DeValois, R.L. et DeValois, K.K. (1988). Spatial vision. New York: Oxford University Press.Google Scholar
Duret, F., Issenhuth, M. et Safran, A.B. (1999). Combined use of several preferred retinal loci in patients with macular disorders when reading single words. Vision Research, 39, 873879.CrossRefGoogle ScholarPubMed
Elliot, D.B., Glasser, A. et Rubin, G. (2001). Aging-Preparing for the 21st century. Optometry and Vision Science, 78, 361363.CrossRefGoogle Scholar
Fine, E.M. (1999). Reading with a central scotoma: what can we learn from simulation studies? Visual Impairment Research, 1, 165173.CrossRefGoogle Scholar
Gilbert, C.D. et Wiesel, T.N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 417, 322328.Google Scholar
Giraudet, G. (2000). Contribution des différentes gammes de fréquences spatiales dans la reconnaissance d'objets-Mise en évidence de la flexibilité du système visuel. Doctorat de Sciences Cognitives, EHESS (Paris).Google Scholar
Giraudet, G. et Roumes, C. (1999). Scene context independence provided by spatial signature learning in a natural object localization task. Dans Bouquet, P., Serafini, L., Brézillon, P., Benerecetti, M. et Castellani, F. (Éds.), Lecture notes in artificial intelligence: Modelling and using context (p. 173185). Berlin: Springer.Google Scholar
Giraudet, G. et Roumes, C. (2004). La signature spatiale de l'objet: une information essentielle pour la localisation de cibles dans une scène naturelle. l'Année psychologique, 104, 949.CrossRefGoogle Scholar
Goodrich, G.L. et Mehr, E.B. (1986). Eccentric viewing training and low vision aids: current practice and implications of peripheral retinal search. American Journal of Optometry and Physiological Optics, 63, 119126.CrossRefGoogle Scholar
Goodrich, G.L. et Quillman, R.D. (1977). Training eccentric viewing. Journal of Visual Impairment and Blindness, 71, 377381.CrossRefGoogle Scholar
Greeves, A.L., Cole, B.L. et Jacobs, R.J. (1988). Assessment of contrast sensitivity of patients with macular disease using reduced contrast near visual acuity charts. Ophthalmic and Physiological Optics, 8, 371377.CrossRefGoogle ScholarPubMed
Guez, J.E., Le Gargasson, J.F., Rigaudière, F. et O'Regan, J.K. (1993). Is there a systematic location for the pseudofovea in patients with central scotoma? Vision Research, 33, 12711279.CrossRefGoogle Scholar
Holocomb, J.G. et Goodrich, G.L. (1976). Eccentric viewing training. Journal of the American Optometric Association, 47, 14381443.Google ScholarPubMed
Lei, H. et Schuchard, R.A. (1997). Using two preferred retinal loci for different lighting conditions in patients with central scotoma. Investigative Ophthalmology and Visual Science, 38, 18121818.Google Scholar
Lindsay, P.H. et Norman, D.A. (1972). Human information processing. New York: Academic Press.Google Scholar
Lovie-Kitchin, J.E. (1989). High contrast and low contrast visual acuity in age related macular degeneration. Clinical and Experimental Optometry, 72, 7983.CrossRefGoogle Scholar
Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.Google Scholar
Nilsson, U.L. (1990). Visual rehabilitation with and without educational training in the use of optical aids and residual vision. A prospective study of patients with advanced age-related macular degeneration. Clinical Vision Science, 6, 310.Google Scholar
Nilsson, U.L., Frennesson, C. et Nilsson, S.E. (1998). Location and stability of a newly established eccentric retinal locus suitable for reading, achieved through training of patients with a dense central scotoma. Optometry and Vision Science, 75, 873878.CrossRefGoogle ScholarPubMed
Nilsson, U.L., Frennesson, C. et Nilsson, S.E. (2003). Patients with AMD and large absolute central scotoma can be trained to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research, 43, 17771787.CrossRefGoogle Scholar
Oliva, A. et Schyns, P.G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex stimuli. Cognitive Psychology, 34, 72107.CrossRefGoogle ScholarPubMed
Oliva, A., Guérin-Dugué, A. et Fabry, V. (1998). Scene « shapes » from power spectra « shapes »: Are the power spectra families compatible with semantic categorisation? Perception, 27, 152.Google Scholar
Oliva, A. et Torralba, A. (2001). Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 42, 145175.CrossRefGoogle Scholar
Peli, E. (1986). Control of eye movement with peripheral vision: implications for training of eccentric viewing. American Journal of Optometry and Physiological Optics, 63, 113118.CrossRefGoogle ScholarPubMed
Petre, K.L., Hazel, C.A., Fine, E.M. et Rubin, G.S. (2000). Reading with eccentric fixation is faster in inferior visual field than in left visual field. Optometry and Vision Science, 77, 3439.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. (1999). Is vision continuous with the cognition? The case for cognitive impenetrability of visual perception. Behavior Brain Sciences, 22, 341423.CrossRefGoogle ScholarPubMed
Rayner, K., Well, A.D. et Pollatsek, A. (1980). Asymmetry of the effective visual field in reading. Perception & Psychophysics, 27, 537544.CrossRefGoogle ScholarPubMed
Schuchard, R.A. et Fletcher, D.C. (1994). Preferred retinal locus: a review with applications in low vision rehabilitation. Ophthalmology Clinics of North America, 7, 243256.Google Scholar
Schuchard, R.A. et Raasch, T.W. (1992). Retinal locus for fixation: Pericentral fixation targets. Clinical Vision Sciences, 7, 511520.Google Scholar
Sunness, J.S., Appelgate, C.A., Haselwood, D. et Rubin, G.S. (1996). Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology, 103, 14581466.CrossRefGoogle ScholarPubMed
Thorpe, S. (1995). La reconnaissance visuelle: de la rétine au cortex inféro-temporal. Revue de neuropsychologie, 5, 520522.Google Scholar
Thorpe, S., Fize, D. et Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520522.CrossRefGoogle ScholarPubMed
Timberlake, G.T., Mainster, M.A., Peli, E., Augliere, R.A., Essock, E.A. et Arend, L.E. (1986). Reading with a macular scotoma. Investigative Ophthalmology and Visual Science, 27, 11371147.Google ScholarPubMed
Tolhurst, D.J. (1998). Seeing and stuying natural images. Perception, 27, 10.Google Scholar
Verezen, C.A., Völker-Dieben, H.J. et Hoyng, C.B. (1996). Eccentric viewing spectacles in everyday life, for the optimum use of residual functional retinal areas, in patients with age-related macular degeneration. Optometry and Vision Science, 73, 413417.CrossRefGoogle ScholarPubMed
Von Noorden, G. et Mackensen, G. (1962). Phenomenology of eccentric fixation. American Journal of Ophthalmology, 53, 642659.CrossRefGoogle ScholarPubMed
Zur, D. et Ullman, S. (2003). Filling-in of retinal scotomas. Vision Research, 43, 971982.CrossRefGoogle ScholarPubMed