Skip to main content Accessibility help
×
Home

The Effect of Aerobic Exercise on White Matter Hyperintensity Progression May Vary by Sex

  • Elizabeth Dao (a1) (a2), Cindy K. Barha (a1) (a2), John R. Best (a1) (a2), Ging-Yuek Hsiung (a2) (a3), Roger Tam (a4) and Teresa Liu-Ambrose (a1) (a2) (a5)...

Abstract

This study explored the efficacy of aerobic training (AT) in mitigating white matter hyperintensity (WMH) progression and whether these changes are sex dependent. This was an exploratory analysis of a randomized controlled trial assessing the effect of AT on cognition in people with vascular cognitive impairment. Participants were randomized to a 6 month AT or usual care (control [CON]) group. A subset completed magnetic resonance imaging to quantify WMH volume. Using an analysis of covariance model, we found a significant sex × group interaction (p = .03). Over the 6 month study, AT females demonstrated greater WMH progression than CON females (p = .05). Among males, there was no significant between-group difference (p = .31). Within the AT group, males demonstrated significantly less WMH progression than females (p = .01) at 6 months. Therefore, the effects of AT on WMH progression may vary by sex; that is, AT may curtail WMH progression in males but not females.

Cette étude a exploré l’efficacité de l’entraînement aérobie (EA) pour atténuer la progression de l’hyperintensité de la matière blanche (HMB) et les différences liées au sexe pour cette intervention. Un essai contrôlé randomisé a été mené pour évaluer l’effet de l’EA sur la cognition de personnes ayant un déficit cognitif d’origine vasculaire. Les participants ont été répartis aléatoirement entre deux groupes : 6 mois d’EA ou soins standards (groupe contrôle). Dans un sous-groupe de participants, l’imagerie par résonance magnétique a été utilisée pour quantifier le volume affecté par la HMB. Un modèle d’analyse de la covariance a permis de mettre en évidence une interaction sexe x groupe significative (p = 0,03). En effet, les femmes du groupe EA ont démontré une plus grande progression de l’hyperintensité de la matière blanche que les femmes du groupe contrôle (p = 0,05) pendant la durée de cette étude (6 mois). Chez les hommes, aucune différence n’a été observée entre les deux groupes (p = 0,31). Dans le groupe EA, les hommes ont montré une progression significativement moindre de la HMB, comparativement aux femmes (p = 0,01) après 6 mois. Ainsi, les effets de l’EA sur la progression de la HMB pourraient varier selon le sexe, et l’EA pourrait freiner la progression de la HMB chez les hommes, mais non chez les femmes.

Copyright

Corresponding author

La correspondance et les demandes de tirés-à-part doivent être adressées à : / Correspondence and requests for offprints should be sent to: Teresa Liu-Ambrose, Ph.D. Department of Physical Therapy University of British Columbia (UBC) 212 – 2177 Wesbrook Mall Vancouver Canada V6T 1Z3 (teresa.ambrose@ubc.ca)

Footnotes

Hide All

Funding for this study was provided by the Canadian Stroke Network and the Heart and Stroke Foundation of Canada.

Footnotes

References

Hide All
American College of Sports Medicine. (2013). ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins.
Bolandzadeh, N., Tam, R., Handy, T. C., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., et al. (2015). Resistance training and white matter lesion progression in older women: Exploratory analysis of a 12-month randomized controlled trial. Journal of the American Geriatrics Society, 63(10), 20522060. doi: 10.1111/jgs.13644
Bolduc, V., Thorin-Trescases, N., & Thorin, E. (2013). Endothelium-dependent control of cerebrovascular functions through age: Exercise for healthy cerebrovascular aging. American Journal of Physiology - Heart and Circulatory Physiology, 305(5), H620633. doi: 10.1152/ajpheart.00624.2012
Casey, D. P., Pierce, G. L., Howe, K. S., Mering, M. C., & Braith, R. W. (2007). Effect of resistance training on arterial wave reflection and brachial artery reactivity in normotensive postmenopausal women. European Journal of Applied Physiology, 100(4), 403408. doi: 10.1007/s00421-007-0447-2
Cyarto, E. V., Lautenschlager, N. T., Desmond, P. M., Ames, D., Szoeke, C., Salvado, O., et al. (2012). Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: The AIBL Active trial. BMC Psychiatry, 12, 167. doi: 10.1186/1471-244X-12-167
de Leeuw, F. E., de Groot, J. C., Achten, E., Oudkerk, M., Ramos, L. M., Heijboer, R., et al. (2001). Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery & Psychiatry, 70(1), 914.
Erkinjuntti, T. (2002). Diagnosis and management of vascular cognitive impairment and dementia. Journal of Neural Transmission Suppl(63), 91109.
Fernando, M. S., Simpson, J. E., Matthews, F., Brayne, C., Lewis, C. E., Barber, R., et al. (2006). White matter lesions in an unselected cohort of the elderly: Molecular pathology suggests origin from chronic hypoperfusion injury. Stroke, 37(6), 13911398. doi: 10.1161/01.STR.0000221308.94473.14
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.
Goto, C., Higashi, Y., Kimura, M., Noma, K., Hara, K., Nakagawa, K., et al. (2003). Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation, 108(5), 530535. doi: 10.1161/01.CIR.0000080893.55729.28
Gouw, A. A., van der Flier, W. M., Fazekas, F., van Straaten, E. C., Pantoni, L., Poggesi, A., et al. (2008). Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: The Leukoaraiosis and Disability study. Stroke, 39(5), 14141420. doi: 10.1161/STROKEAHA.107.498535
Groll, D. L., To, T., Bombardier, C., & Wright, J. G. (2005). The development of a comorbidity index with physical function as the outcome. Journal of Clinical Epidemiology, 58(6), 595602.
Hsiung, G. Y., Sadovnick, A. D., & Feldman, H. (2004). Apolipoprotein E epsilon4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging. CMAJ, 171(8), 863867. doi: 10.1503/cmaj.1031789
Kervio, G., Carre, F., & Ville, N. S. (2003). Reliability and intensity of the six-minute walk test in healthy elderly subjects. Medicine & Science in Sports & Exercise, 35(1), 169174. doi: 10.1249/01.MSS.0000043545.02712.A7
Lakka, T. A., & Laaksonen, D. E. (2007). Physical activity in prevention and treatment of the metabolic syndrome. Applied Physiology Nutrition and Metabolism, 32(1), 7688. doi: 10.1139/h06-113
Leeuwis, A.E., Hooghiemstra, A.M., Amier, R., Ferro, D.A., Franken, L., Nijveldt, R., et al. (2017). Design of the ExCersion-VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(2), 157165. doi: http://dx.doi.org/10.1016/j.trci.2017.02.002
Liu-Ambrose, T., Best, J. R., Davis, J. C., Eng, J. J., Lee, P. E., Jacova, C., et al. (2016). Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology, 87(20), 20822090. doi: 10.1212/WNL.0000000000003332
Liu-Ambrose, T., Eng, J. J., Boyd, L. A., Jacova, C., Davis, J. C., Bryan, S., et al. (2010). Promotion of the mind through exercise (PROMoTE): A proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment. BMC Neurology, 10, 14. doi: 10.1186/1471-2377-10-14
Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. Journal of Cerebral Blood Flow and Metabolism Supplement, 35(6), 902911. doi: 10.1038/jcbfm.2015.49
Markus, H. S., Allan, C. L., & Ebmeier, K. P. (2014). Chapter 15. Cerebral hemodynamics in cerebral small vessel disease. In Pantoni, L., Gorelick, P. B., & Gorelick, P. (Eds.), Cerebral small vessel disease (pp. 180191). Cambridge, United Kingdom: Cambridge University Press.
McAusland, J., Tam, R. C., Wong, E., Riddehough, A., & Li, D. K. (2010). Optimizing the use of radiologist seed points for improved multiple sclerosis lesion segmentation. IEEE Transactions on Biomedical Engineering, 57(11). doi: 10.1109/TBME.2010.2055865
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. doi: 10.1111/j.1532-5415.2005.53221.x
Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 10651076. doi: 10.1214/aoms/1177704472
Pierce, G. L., Eskurza, I., Walker, A. E., Fay, T. N., & Seals, D. R. (2011). Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clinical Science, 120(1), 1323. doi: 10.1042/CS20100174
Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: an update. Nature Reviews Neurology, 11(3), 157165. doi: 10.1038/nrneurol.2015.10
Sachdev, P. S., Parslow, R., Wen, W., Anstey, K. J., & Easteal, S. (2009). Sex differences in the causes and consequences of white matter hyperintensities. Neurobiology of Aging, 30(6), 946956. doi: 10.1016/j.neurobiolaging.2007.08.023
Schmidt, R., Fazekas, F., Kapeller, P., Schmidt, H., & Hartung, H. P. (1999). MRI white matter hyperintensities: Three-year follow-up of the Austrian Stroke Prevention Study. Neurology, 53(1), 132139.
Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 8797. doi: 10.1109/42.668698
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143155. doi: 10.1002/hbm.10062
Smith, S. M., & Brady, J. M. (1997). SUSAN—A new approach to low level image processing. International Journal of Computer Vision, 23(1), 4578. doi: 10.1023/a:1007963824710
Suo, C., Singh, M. F., Gates, N., Wen, W., Sachdev, P., Brodaty, H., et al. (2016). Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Molecular Psychiatry, 21(11), 1645. doi: 10.1038/mp.2016.57
van den Heuvel, D. M., Admiraal-Behloul, F., ten Dam, V. H., Olofsen, H., Bollen, E. L., Murray, H. M., et al. (2004). Different progression rates for deep white matter hyperintensities in elderly men and women. Neurology, 63(9), 16991701.
Welch, V., Doull, M., Yoganathan, M., Jull, J., Boscoe, M., Coen, S. E., et al. (2017). Reporting of sex and gender in randomized controlled trials in Canada: A cross-sectional methods study. Research Integrity and Peer Review, 2, 15. doi: 10.1186/s41073-017-0039-6
Yesavage, J. A. (1988). Geriatric depression scale. Psychopharmacology Bulletin, 24(4), 709711.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed