Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T10:18:38.055Z Has data issue: false hasContentIssue false

Subthalamic Nucleus Deep Brain Stimulation: An Invaluable Role for MER

Published online by Cambridge University Press:  23 September 2014

F. A. Zeiler*
Affiliation:
Department of Surgery, Section of Neurosurgery, University of Manitoba, Winnipeg, Manitoba, Canada
M. Wilkinson
Affiliation:
Department of Surgery, Section of Neurosurgery, University of Manitoba, Winnipeg, Manitoba, Canada
J. P. Krcek
Affiliation:
Department of Surgery, Section of Neurosurgery, University of Manitoba, Winnipeg, Manitoba, Canada
*
Section of Neurosurgery, University of Manitoba, GB-1 820 Sherbrook Street, Health Sciences Center, Winnipeg, Manitoba, R3A 1R9, Canada. Email: umzeiler@cc.umanitoba.ca
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

Subthalamic nucleus (STN) deep brain stimulation (DBS) is currently the main surgical procedure for medically refractory Parkinson's disease. The benefit of intra-operative microelectrode recording (MER) for the purpose of neurophysiological localization and mapping of the STN continues to be debated.

Methods:

A retrospective review of the charts and operative reports of all patients receiving STN DBS implantation for Parkinson's disease at our institution from January 2004 to March 2011 was done.

Results:

Data from 43 of 44 patients with Parkinson's disease treated with STN DBS were reviewed. The average number of tracts on the left was 2.4, versus 2.3 on the right. The average dorsal and ventral anatomical boundaries of the STN based on Schaltenbrand's Stereotactic Atlas were estimated to be at -5.0 mm above and +1.4 mm below target respectively. The average dorsal and ventral boundaries of the STN using MER were -2.6 mm above and +2.0 mm below target respectively. The average dorsal-ventral distance of the STN as predicted by Stereotactic Atlas was 6.4 mm, compared to 4.6 mm as determined by MER. MER demonstrated the average dorsal and ventral boundaries on the left side were -2.6 mm and +2.2 mm from target respectively, while the average dorsal and ventral boundaries on the right side were -2.5 mm and +1.8 mm from target respectively with MER.

Conclusions:

MER in STN DBS surgery demonstrated measurable difference between stereotactic atlas/MRI STN target and neurophysiologic STN localization.

Résumé:

RÉsumÉ:Contexte:

La stimulation cérébrale profonde (SCP) du corps de Luys (CL) est actuellement la principale intervention chirurgicale utilisée dans le traitement de la maladie de Parkinson réfractaire au traitement médical. Le bénéfice de l'enregistrement par microélectrode (MER) pendant la chirurgie pour la localisation neurophysiologique et la cartographie du CL demeure un sujet de controverse.

Méthode:

Nous avons effectué une revue rétrospective des dossiers et des comptes rendus chirurgicaux de tous les patients atteints de la maladie de Parkinson qui ont reçu une implantation d'électrode pour la SCP du CL dans notre institution de janvier 2004 à mars 2011.

Résultats:

Les données de 43 des 44 patients atteints de la maladie de Parkinson traités par SCP du CL ont été revues. Le nombre moyen de faisceaux était 2,4 du côté gauche et 2,3 du côté droit. Les limites anatomiques dorsales et ventrales moyennes du CL selon l'atlas d'anatomie stéréotaxique de Schaltenbrand se situaient à -5,0 mm au dessus et +1,4 mm sous la cible respectivement selon notre estimé. Les limites dorsales et ventrales moyennes du CL en utilisant le MER étaient -2,6 mm au dessus et +2,0 mm sous la cible respectivement. La distance dorsale-ventrale moyenne du CL prédite au moyen de l'atlas était 6,4 mm comparée à 4,6 mm selon la détermination par le MER. Le MER a montré que les limites dorsales et ventrales moyennes du côté gauche étaient à -2,6 mm et +2,2 mm de la cible respectivement, alors que les limites dorsales et ventrales moyennes du côté droit étaient à -2,5 mm et +1,8mm de la cible respectivement avec le MER.

Conclusions:

Le MER dans chirurgie de la SCP du CL a montré une différence mesurable entre la cible au niveau du CL telle que déterminée selon l'atlas d'anatomie stéréotaxique/l'IRM et la localisation neurophysiologique par SCP.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Deep-brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.CrossRefGoogle Scholar
2. Foltynie, T, Zrinzo, L, Martinez-Torres, , et al. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82:358–63.CrossRefGoogle ScholarPubMed
3. Abosch, A, Yacoub, E, Ugurbil, K, et al. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurg. 2010;67(6):1745–56.CrossRefGoogle Scholar
4. Senatus, PB, Teeple, D, McClelland, S, et al. A technique for minimally altering anatomically based subthalamic electrode targeting by microelectrode recording. Neurosurg Focus. 2006;20(5):E8.CrossRefGoogle ScholarPubMed
5. Chen, SY, Lee, CC, Lin, SH, et al. Microelectrode recording can be a good adjunct in magnetic resonance image-directed subthalamic nucleus deep brain stimulation for parkinsonism. Surg Neurol. 2006;65:253–61.CrossRefGoogle ScholarPubMed
6. Obuchi, T, Katayama, Y, Kobayashi, K, et al. Direction and predictive factors for the shift of brain structure during deep brain stimulation electrode implantation for advanced Parkinson’s disease. Neuromodulation. 2008;11(4):302–10.CrossRefGoogle ScholarPubMed
7. Romanelli, P, Heit, G, Hill, BC, et al. Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J Neurosurg. 2004;100:611–8.CrossRefGoogle ScholarPubMed
8. McClelland, S. A cost analysis of intraoperative microelectrode recording during subthalamic stimulation for Parkinson’s disease. Mov Disord. 2011;26(8):1422–7.CrossRefGoogle ScholarPubMed
9. Gorgulho, A, De Salles, AAF, Frighetto, L, et al. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg. 2005;102:888–96.CrossRefGoogle ScholarPubMed
10. Hariz, MI. Surgical probing into the basal ganglia: hemorrhage and hardware-related risks, and costs of microelectrode recording. Mov Disord. 2011;26(8):1375–7.CrossRefGoogle ScholarPubMed
11. McClelland, S, Ford, B, Senatus, PB, et al. Subthalamic stimulation for Parkison disease: determination of electrode location necessary for clinical efficacy. Neurosurg Focus. 2005;19 (5):E12.CrossRefGoogle Scholar
12. Seifried, C, Weise, L, Hartmann, R, et al. Intraoperative microelectrode recording for the delineation of subthalamic nucleus topography in Parkinson’s disease. Brain Stim. 2012;5(3):378–87.CrossRefGoogle ScholarPubMed
13. Hutchison, WD, Allan, RJ, Opitz, H, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 1998;44(4):622–8.CrossRefGoogle Scholar
14. Sterio, D, Zonenshayn, M, Mogilner, AY, et al. Neurophysiological refinement of subthalamic nucleus targeting. Neurosurg. 2002;50(1):5869.Google ScholarPubMed