Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T15:17:56.599Z Has data issue: false hasContentIssue false

Scanning and Transmission Electron Microscopy of the Ependymal Lining of the Third Ventricle

Published online by Cambridge University Press:  18 September 2015

J.E. Bruni*
Affiliation:
Department of Anatomy, Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
*
Dept. of Anatomy, University of Western Ontario, London 72, Ontario
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In its simplest form, the ependyma of the third ventricle consists of a single layer of cuboidal cells. Although these typical mural cells constitute the greater part of the lining of the ventricle, a specialized variety of ependymal cell (the tanycyte) can also be distinguished within circumscribed areas of the ventricular wall. Although such cells are found scattered throughout the dorsoventral extent of the third ventricle, they are particularly numerous along the ventrolateral walls and floor. The regional variation in the surface morphology of the ventricle walls as evident with the scanning electron microscope is consistent with this pattern of tanycyte distribution. Ultrastructural studies have established that the tanycyte is a fundamentally distinct cell with a long basal process extending into the subjacent neuropil and frequently directed toward a capillary wall. This unique morphology conforms closely to its three-dimensional appearance as demonstrated with the scanning electron microscope. The significance of ependymal tanycytes particularly of the third ventricle derives largely from the connections they establish between the ventricular lumen and vasculature of the median eminence. This intriguing structural relationship has led to the suggestion that ependymal cells and cerebrospinal fluid of the third ventricle may be involved in the regulation of adenohypophysial activity. Evidence indicating the functional involvement of specialized ependymal cells in the neuroendocrine control of pituitary activity is reviewed.

Type
Canadian Association of Anatomists Symposium
Copyright
Copyright © Canadian Neurological Sciences Federation 1974

References

Agduhr, E. (1932). Chorioid plexus and ependyma. In Cytology and Cellular Pathology of the Nervous System, pp. 537573. Edited by Penfield, W.Hoeber, P.B. Inc.: New York.Google Scholar
Allen, D.J., and Low, F.N. (1973). The ependymal surface of the lateral ventricle of the dog as revealed by scanning electron microscopy. American Journal of Anatomy, 137, 483489.CrossRefGoogle ScholarPubMed
Anand Kumar, T.C. (1968). Sexual differences in the ependyma lining the third ventricle in the area of the anterior hypothalamus of adult Rhesus monkeys. Zeitschrift für Zellforschung und Mikroskopische Anatomic 90, 2836.CrossRefGoogle Scholar
Anand Kumar, T.C. (1972). Neuroendocrine regulation of sexual cycles and ovulation in non-human primates. In symposium on the Use of Non-Human Primates in Research on Human Reproduction, pp. 152169. Edited by Diczfalusy, E. and Standley, C. C.WHO Research and Training Centre on Human Reproduction: Stolkholm.Google Scholar
Anand Kumar, T.C., and Knowles, F. (1967). A system linking the third ventricle with the pars tuberalis of the Rhesus monkey. Nature, 215, 5455.CrossRefGoogle Scholar
Anand Kumar, T.C., and Thomas, G.H. (1968). Metabolites of 3H-oestradiol-17 beta in the cerebrospinal fluid of the Rhesus monkey. Nature, 219, 628629.CrossRefGoogle Scholar
Bagshawe, K.D., Hillary Orr, A., and Rushworth, A.G.J. (1968). Relationship between concentrations of human chorionic gonadotrophin in plasma and cerebrospinal fluid. Nature, 217, 950951.CrossRefGoogle ScholarPubMed
Bleier, R. (1971). The relations of ependyma to neurons and capillaries in the hypothalamus: A Golgi-Cox study. Journal of Comparative Neurology, 142, 439463.CrossRefGoogle ScholarPubMed
Bleier, R.(1972). Structural relationship of ependymal cells and their processes within the hypothalamus. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 306318. Edited by Knigge, K.M.Scott, D.E. and Weindl, A.Karger: Basel.Google Scholar
Brawer, J.R. (1972). The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. Journal of Comparative Neurology, 145, 2542.CrossRefGoogle ScholarPubMed
Brightman, M.W. (1965). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. Journal of Cell Biology, 26, 99123.CrossRefGoogle ScholarPubMed
Brightman, M.W., and Palay, S.L. (1963). The fine structure of ependyma in the brain of the rat. Journal of Cell Biology, 19, 415439.CrossRefGoogle ScholarPubMed
Bruni, J.E., Montemurro, D.G., Clattenburg, R.E., and Singh, R.P. (1972). A scanning electron microscopic study of the ependymal surface of the third ventricle of the rabbit, rat, mouse and human brain. Anatomical Record, 174, 407420.CrossRefGoogle ScholarPubMed
Bruni, J.E., Montemurro, D.G., Clattenburg, R.E., and Singh, R.P. (1973). Scanning electron microscopy of the ependymal surface of the third ventricle after silver nitrate test staining. Brain Research, 61, 207216.CrossRefGoogle Scholar
Cathcart, R.S., and Worthington, W.C. (1964). Currents and clearing action produced in the rat cerebral ventricle by ependymal cilia. Anatomical Record, 148, 269.Google Scholar
Chamberlain, J.G. (1972). 6-Aminonicotinamide (6-AN)-induced abnormalities of the developing ependyma and choroid plexus as seen with the scanning electron microscope. Teratology, 6, 281286.CrossRefGoogle ScholarPubMed
Clattenburg, R.E., Singh, R.P., and Montemurro, D.G. (1971). Ultrastructural changes in the preopic nucleus of the rabbit following coitus. Neuroendocrinology, 8, 289306.CrossRefGoogle ScholarPubMed
Clattenburg, R.E., Singh, R.P., and Montemurro, D.G. (1972). Post-coital ultrastructural changes in neurones of the suprachiasmatic nucleus of the rabbit. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 125, 448459.CrossRefGoogle ScholarPubMed
Clementi, F., and Marini, D. (1972). The surface fine structure of the walls of cerebral ventricles and of choroid plexus in cat. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 123, 8295.CrossRefGoogle Scholar
Coates, P.W. (1972). Scanning electron microscopic studies of the third ventricle from infant monkey brains disclose supraependymal cells. Journal of Cell Biology, 55, 47a.Google Scholar
Coates, P.W. (1973a). Supraependymal cells and surface specializations on the floor of the monkey third ventricle: Scanning electron microscopic studies. Anatomical Record,175, 294.Google Scholar
Coates, P.W. (1973b). Supraependymal cells of the monkey third ventricle. American Journal of Anatomy, 136, 533539.CrossRefGoogle ScholarPubMed
Dalen, H., Schlapfer, W.T., and Mamoon, A. (1971). Cilia on cultured ependymal cells examined by scanning electron microscopy. Experimental Cell Research, 67, 375379.CrossRefGoogle ScholarPubMed
Daniel, J.L. (1969). Examination of radioactive materials by scanning electron microscopy. In Scanning Electron Microscopy, pp. 295308. IIT Research Institute: Chicago.Google Scholar
Dencken, S.J., and Haggendal, C.J. (1969). Noradrenaline and cerebrospinal fluid. In Zirkumventrikulare Organe und Liquor, pp. 243247. Edited by Sterba, G.Fischer: Jena.Google Scholar
Dierickx, K. (1962). The dendrites of the preoptic neurosecretory nucleus of Rana temporaria and the osmoreceptors. Archives Internationales de Pharmacodynamic et de Therapie, 140, 708725.Google ScholarPubMed
Dirksen, E.R., and Satir, P. (1972). Ciliary activity in the mouse oviduct as studies by transmission and scanning electron microscopy. Tissue and Cell, 4, 389404.CrossRefGoogle Scholar
Fleischhauer, F. (1961). Regional differences in the structure of the ependyma and subependymal layers of the cerebral ventricles of the cat. In Regional Neurochemistry, pp. 279283. Edited by Kety, S.S. and Elkes, J.Pergamon: New York.Google Scholar
Florey, H.W., Poole, J.C.F., and Meek, G.A. (1959). Endothelial cells and ‘cement’ lines. Journal of Pathology and Bacteriology, 77, 625636.CrossRefGoogle ScholarPubMed
Fox, C.A., De Salva, S., Zeit, W., and Fisher, R. (1948). Demonstration of supra-ependymal nerve endings in the third ventricle and synaptic terminals in the cerebral cortex. Anatomical Record, 100, 767.Google Scholar
Garbarsch, C., and Christensen, B.C. (1970). Scanning electron microscopy of aortic endothelial cell boundaries after staining with silver nitrate. Angiologica, 7, 365373.Google ScholarPubMed
Geissinger, H.D. (1972). The use of silver nitrate as a stain for scanning electron microscopy of arterial intima and paraffin sections of kidney. Journal of Microscopy, 95,471481.CrossRefGoogle ScholarPubMed
Gordon, J.H., Bollinger, J., and Reichlin, S. (1972). Plasma thyrotropin-releasing hormone after injection into the third ventricle, systemic circulation, median eminence and anterior pituitary. Endocrinology, 91, 696701.CrossRefGoogle ScholarPubMed
Gottlob, R., and Hoff, H.F. (1968). Histochemical investigations on the nature of large blood vessel endothelial and medial argyrophilic lines and on the mechanism of silver staining. Histochemie, 13, 7083.CrossRefGoogle ScholarPubMed
Hagedoorn, J. (1965). Seasonal changes in the ependyma of the third ventricle of the skunk Mephitis mephitis nigra. Anatomical Record, 151, 453454.Google Scholar
Heller, H. (1969). Neurohypophysial hormones in the cerebrospinal fluid. In Zirkumventrikulare Organe und Liquor, pp. 235242. Edited by Sterba, G.Fischer: Jena.Google Scholar
Heller, H., Hasan, S.H., and Saifi, A.Q. (1968). Antidiuretic activity in the cerebrospinal fluid. Journal of Endocrinology, 41, 273380.CrossRefGoogle ScholarPubMed
Horstmann, E. (1954). Die faserglia des Selachiergehirns. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 39, 588617.CrossRefGoogle Scholar
Ito, H. (1965). The neurosecretory apparatus in the ventricular wall of the reptilian brain. Journal fur Hirnforschung, 7, 493498.Google ScholarPubMed
Kendall, J.W., Grimm, Y., and Shimshak, G. (1969). Relation of cerebrospinal fluid circulation to the ACTH-suppressing effects of corticosteroids in the rat brain. Endocrinology, 85, 200208.CrossRefGoogle Scholar
Klinkerfuss, G.H. (1964). An electron microscopic study of the ependyma and subependymal glia of the lateral ventricle of the cat. American Journal of Anatomy, 115, 71100.CrossRefGoogle ScholarPubMed
Knigge, K.M., and Scott, D.E. (1970). Structure and function of the median eminence. American Journal of Anatomy, 129, 223244.CrossRefGoogle ScholarPubMed
Knigge, K.M., and Silverman, A.J. (1972). Transport capacity of the median eminence. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 350363. Edited by Knigge, K.M., Scott, D.E. and Weindl, A.Karger: Basel.Google Scholar
Knowles, F. (1967). Neuronal properties of neurosecretory cells. In Neurosecretion, pp. 819. Edited by Stutinsky, F.Springer-Verlag: New York.Google Scholar
Knowles, F. (1972). Ependyma of the third ventricle in relation to pituitary function. In Progress in Brain Research, Topics in Neuroendocrinology, pp. 255270. Edited by Ariens Kappers, J. and Schade, J.P.Elsevier: Amsterdam.Google Scholar
Knowles, F., and Anand Kumar, T.C. (1969). Structural changes, related to reproduction, in the hypothalamus and in the pars tuberalis of the Rhesus monkey. Philisophical Transactions of the Royal Society (B), 256, 357375.Google Scholar
Kobayashi, H. (1972). Median eminence of the hagfish and ependymal absorption in higher vertebrates. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 6778. Edited by Knigge, K.M.Scott, D.E. and Weindl, A.. Karger: Basel.Google Scholar
Kobayashi, H., and Matsui, T. (1969). Fine structure of the median eminence. In frontiers of Neuroendocrinology, pp. 346. Edited by Ganong, W.F. and Martini, L.Oxford University Press: New York.Google Scholar
Kobayashi, H., Matsui, T., and Ishii, S. (1970). Functional electron microscopy of the hypothalamic median eminence. International Review of Cytology, 29, 281381.CrossRefGoogle ScholarPubMed
Kobayashi, H., Wada, M., and Uemura, H. (1972). Uptake of peroxidase from the third ventricle by ependymal cells of the median eminence. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 127,545551.CrossRefGoogle ScholarPubMed
Kohno, K.,and Usui, T. (1966). Electron microscopic studies on ependymal cilia and their basal feet on the ventral stalk of the rat subfornical organ. Bulletin of Tokyo Medical and Dental University, 13, 381405.Google ScholarPubMed
Kozlowski, G.P., Scott, D.E., and Dudley, G.K. (1973). Scanning electron microscopy of the third ventricle of sheep. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 136, 169176.CrossRefGoogle ScholarPubMed
Kozlowski, G.P., Scott, D.E., and Murphy, J.A. (1972). Scanning electron microscopy of the lateral ventricles of sheep. American Journal of Anatomy, 135, 561566.CrossRefGoogle ScholarPubMed
Leonhardt, H. (1966). Uberependymale tanycyten des III. ventrikels beim kaninchen in elektronenmikroskopischer betrachtung. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 74, 111.CrossRefGoogle Scholar
Leonhardt, H. (1968). Bukettformige strukturen in ependym der regio hypothalamica des III. ventrikels beim kaninchen. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 88, 297317.CrossRefGoogle Scholar
Leonhardt, H., and Backhusroth, A. (1969). Synapsenartige kontakte zwischen intraventrikularen axonendigugen und freien oberflachen von ependymzellen des kaninchenhirns. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 97, 369376.CrossRefGoogle Scholar
Leonhardt, H., and Lindner, E. (1967). Marklose nervenfasen im III.und IV. ventrikel des kanichen und katzengehirns. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 78, 118.CrossRefGoogle Scholar
Leonhardt, H., and Prien, H. (1968). Eine weitere art intraventrikularer kolbenformiger axonendigugen aus dem IV. ventrikel des kanichengehirns. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 92, 394399.CrossRefGoogle Scholar
Lévêque, T.F. (1972). The medial prechiasmatic area in the rat and LH secretion. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 298305. Edited by Knigge, K.M.Scott, D.E. and Weindl, A.Karger. Basel.Google Scholar
Lévêque, T.F., and Hofkin, G.A. (1961). Demonstration of an alcohol-chloroform insoluable periodic acid schiff reactive substance in the hypothalamus of the rat. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 53, 185191.CrossRefGoogle Scholar
Lévêque, T.F., and Hofkin, G.A. (1962). A hypothalamic periventricular PAS substance and neuroendocrine mechanisms. Anatomical Record, 142, 252.Google Scholar
Lévêque, T.F., Stutinsky, F., Porte, A., and Stoeckel, M.E. (1966). Morphologie fine d–une differenciation glandulaire du ressus influndibulaire chez la rat. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 69, 381394.CrossRefGoogle Scholar
Linfoot, J.A., Garcia, J.F., Wei, W., Fink, R., Sarin, R., Born, J.L., and Lawrence, J.H. (1970). Human growth hormone levels in cerebrospinal fluid. Journal of Clinical Endocrinology, 31,230232.CrossRefGoogle ScholarPubMed
Lofgren, F. (1959). New aspects of the hypothalamic control of the adenohypophysis. Acta Morphologica Neerlando-Scandinavica, 2, 220229.Google ScholarPubMed
Lofgren, F. (1960). The infundibular recess, a component in te hypothalamo-adenohypophyseal system. Acta Morphologica Neerlando-Scandinavica, 3, 5578.Google Scholar
Luppa, H., and Feustel, G. (1971). Location and characterization of hydrolytic enzymes of the Illrd ventricle lining in the region of the recessus infundibularis of the rat. A study on the function of the ependyma. Brain Research, 29, 253270.CrossRefGoogle Scholar
Lurie, P.O., and Weiss, J.B. (1967). Progresterone in cerebrospinal fluid during human pregnancy. Nature, 215, 11781179.CrossRefGoogle Scholar
Malinsky, J. (1968). Fine structure of ependyma in lateral ventricles of human brain. Acta Universitatis Palackianae Olomucensis, 48, 6572.Google Scholar
Margolis, R.U., and Altszular, N., (1967). Insulin in the cerebrospinal fluid. Nature, 215, 13751376.CrossRefGoogle ScholarPubMed
Matsui, T., and Kobayashi, H. (1968). Surface protrusions from the ependymal cells of the median eminence. Archiv für Anatomie, Histologie et Embryologie, 51, 429436.Google ScholarPubMed
Millhouse, O.E. (1971). A golgi study of third ventricle tanycytes in the adult rodent brain. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 121, 113.CrossRefGoogle ScholarPubMed
Millhouse, O.E. (1972). Light and electron microscopic studies of the ventricular wall. Zeitschrift für Zellforschung und Mikroskopische Anatomic 127, 149174.CrossRefGoogle ScholarPubMed
Mitro, A. (1969). Uber ein spezielles ependym im 3. ventrikel der ratte. Experientia, 25, 287.CrossRefGoogle Scholar
Motta, M., Piva, F., Tima, L., Zanisi, M., and Martini, L. (1971). Intrahypothalamic localization of the nuclei synthesizing the gonadotropin releasing factors. Journal of Neurovisceral Relations, 10, 3240.Google Scholar
Nandy, K., and Bourne, G.H. (1964). Histochemical studies on the ependyma lining the lateral ventricle of the rat with a note on its possible functional significance. Annales d’Histochimie, 9, 305313.Google ScholarPubMed
Noack, W., Dumitrescu, L., and Schweichel, J.U. (1972). Scanning and electron microscopical investigations of the surface structures of the lateral ventricles in the cat. Brain Research, 46, 121129.CrossRefGoogle ScholarPubMed
Oksche, A., Zimmermann, P., and Oehmke, H.J. (1972). Morphometric studies of tubero-eminential systems controlling reproductive functions. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 142153. Edited by Knigge, K.M., Scott, D.E., and Weindl, A.Karger: Basel.Google Scholar
Ondo, J.G., Eskay, R.L., Mical, R.S., and Porter, J.C. (1973). Release of LH by LRF injection into the CSF: A transport role for the median eminence. Endocrinology, 93, 231237.CrossRefGoogle ScholarPubMed
Ondo, J.G., Mical, R.S., and Porter, J.C. (1972). Passage of radioactive substances from CSF to hypophyseal portal blood. Endocrinology, 91, 12391246.CrossRefGoogle Scholar
Oztan, N. (1967). Neurosecretory processes projecting from the preoptic nucleus into the third ventricle of Zoarces viviparus (L). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 80, 458460.CrossRefGoogle ScholarPubMed
Pavel, S. and Coculescu, M., (1972). Arginine vasotocin-like activity of cerebrospinal fluid induced by injection of hypertonic saline into the third cerebral ventricle of cats. Endocrinology, 91, 825827.CrossRefGoogle Scholar
Peute, J. (1969). Fine structure of the paraventricular organ of Zenopus laevis tadpoles. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 97, 564575.Google Scholar
Purkinje, J.E. (1836). UeberFlimmerbewegungen im gehirn. Muller҆s Archives für Anatomie und Physiologie, 289.Google Scholar
Rinne, U.K. (1966). Ultrastructure of the median eminence of the rat. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 74, 98122.CrossRefGoogle ScholarPubMed
Schachenmayr, W. (1967). Uber die entwicklung von ependym und plexus chorioideus der ratte. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 77, 2563.CrossRefGoogle Scholar
Schechter, J., and Weiner, R., (1972). Ultrastructural changes in the ependymal lining of the media eminence following the intraventricular administration of catecholamine. Anatomical Record, 172, 643650.CrossRefGoogle Scholar
Schimrigk, K. (1966). Uber die wandstruktur der seitenventrikel und des dritten ventrikels beim menschen. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 70, 120.CrossRefGoogle Scholar
Schwanitz, W. (1969). Die topographische venteilung supraependymaler strukturen in den ventrikeln und im zentralkanal des kaninchengehirns. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 100, 536551.CrossRefGoogle Scholar
Scott, D.E., Dudley, G.K., Gibbs, F.P., and Brown, G.M. (1972). The mammalian median eminence. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 3549. Edited by Knigge, K.M.Scott, D.E. and Weindl, A.Karger: Basel.Google Scholar
Scott, D.E., and Knigge, K.M. (1970). Ultrastructural changes in the median eminence of the rat following deafferentation of the basal hypothalamus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 105, 132.CrossRefGoogle ScholarPubMed
Scott, D.E., Kozlowski, G.P., and Dudley, G.K. (1973). A comparative ultrastructural analysis of the third cerebral ventricle of the North American mink (Mustela vison). Anatomical Record, 175, 155168.CrossRefGoogle ScholarPubMed
Scott, D.E., Paull, W.K., and Dudley, G.K. (1972). A comparative scanning electron microscopic analysis of the human cerebral ventricular system. Zeitschrift für Zellforschung und Mikroskopische Anatomie,132, 203215.CrossRefGoogle ScholarPubMed
Sharp, P.J. (1972). Tanycyte and vascular patterns in the basal hypothalamus of Cotumix quail with reference to their possible neuroendocrine significance. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 127, 552569.CrossRefGoogle Scholar
Siersbaek-Nielsen, K., and Molholm Hansen, J. (1970). Tyrosine and free thyroxine in cerebrospinal fluid in thyroid disease. Acta Endocrinologica, 64, 126132.Google ScholarPubMed
Smoller, C.G. (1965). Neurosecretory processes extending into the third ventricle: secretory or sensory? Science, 147, 882.CrossRefGoogle ScholarPubMed
Studnicka, K.F. (1900). Untersuchungen uber der bau des ependyms der nervosen centralorgane. Anatomische Hefte, 15, 303331.CrossRefGoogle Scholar
Tennyson, V.M., and Pappas, G.D., (1962). An electron microscope study of ependymal cells of the foetal, early post-natal, and adult rabbit. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 56, 595618.CrossRefGoogle Scholar
Tennyson, V.M., and Pappas, G.D. (1968). Ependyma. In Pathology of the Nervous System, pp. 518531. Edited by Minckler, J.McGraw Hill: New York.Google Scholar
Tima, L. (1971). On the site of production of releasing factors. Memoirs of the Society for Endocrinology, 19, 895901.Google Scholar
Torack, R.M., and Finke, E.H., (1971). Evidence for a sequestration of function within the area postrema based on scanning electron microscopy and the penetration of horseradish peroxidase. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 118, 8596.CrossRefGoogle ScholarPubMed
Usui, T. (1968). Electron microscopic studies on the ependymal cells of the organon vasculosum laminae terminalis in the adult rat. Bulletin of Tokyo Medical and Dental University, 15, 118.Google ScholarPubMed
Vigh, B. (1964). Ependymosecretion, secretion Gomori-positive de l’ependyme dans l’hypothalamus. Annales d’endocrinologie, 25 140141.Google Scholar
Vigh, B., Aros, B., Wenger, T.Koritsanszky, S., and Cegledi, G. (1963). Ependymosecretion (ependymal neurosecretion). IV. The Gomori-positive secretion of the hypothalamic ependyma of various vertebrates and its relation to the anterior lobe of the pituitary. Acta Biologica Hungarica, 13, 407419.Google Scholar
Vigh, B., Vigh-Teichmann, I., and Aros, B. (1970). Ultrastructure of the CSF contacting neurons of the spinal cord in the newt, Triturus Cristatus. Acta Morphologica Academiae Scientiarum Hungaricae, 18, 369382.Google ScholarPubMed
Vigh, B., Vigh-Teichmann, I., Koritsanszky, S. and Aros, B., (1971). Ultrastructure of the spinal CSF contacting neuronal system in the white leghorn chicken. Acta Morphologica Academiae Scientiarum Hungaricae, 19, 924.Google ScholarPubMed
Vigh-Teichmann, I., Vigh, B., and Koritsanszky, S. (1970a). Liquorkontaktneurone im nucleus lateralis tuberis von fischen. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 105, 325–338.CrossRefGoogle Scholar
Vigh-Teichmann, I., Vigh, B., and Koritsanszky, S. (1970b). Liquorkontaktneurone im nucleus paraventricularis. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 103, 483501.CrossRefGoogle Scholar
Vigh-Teichmann, I., Vigh, B., Koritsanszky, S., and Aros, B. (1970c). Liquorkontaktneurone im nucleus infundibularis. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 108, 1734.CrossRefGoogle Scholar
Vorherr, H., Bradbury, M.W.B., Hoghoughi, M., and Kleeman, C.R. (1968). Antidiuretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level. Endocrinology, 83, 246250.CrossRefGoogle ScholarPubMed
Weindl, A., and Joynt, R.J. (1972a). Ultrastructure of the ventricular walls. Archives of Neurology, 26, 420427.CrossRefGoogle ScholarPubMed
Weindl, A., and Joynt, R.J., (1972b). The median eminence as a circumventricular organ. In Brain-Endocrine Interaction, Median Eminence: Structure and Function, pp. 280297. Edited by Knigge, K.M.Scott, D.E. and Weindl, A.Karger: Basel.Google Scholar
Weiner, R.I., Blake, C.A., and Sawyer, C.H. (1971). Responses to intraventricular and intravenous injections of luteinizing hormonereleasing hormone (LH-RH). Proceedings of the 25th International Congress of Physiological Sciences, 9, 600.Google Scholar
Weiner, R.I., Terkel, J., Blake, C.A., Schally, A.V., and Sawyer, C.H., (1972). Changes in serum luteinizing hormone following intraventricular and intravenous injections of luteinizing hormone-releasing hormone in the rat. Neuroendocrinology, 10, 261272.CrossRefGoogle Scholar
Westergaard, E. (1970). The lateral cerebral ventricles and the ventricular walls. Thesis, Andelsbogtrykkeriet i Odense, pp. 1216.Google Scholar
Westergaard, E. (1972). The fine structure of nerve fibers and endings in the lateral cerebral ventricles of the rat. Journal of Comparative neurology, 144, 345354.CrossRefGoogle ScholarPubMed
Wislocki, G.B. (1932). The cytology of the cerebrospinal pathway. In Special Cytology, pp. 14851521. Edited by Cowdry, E.V.Hoeber, P.B. Inc.: New York.Google Scholar
Wittkowski, W. (1969). Ependymokrinie und rezeptoren in der wand des recessus infundibularis der maus und ihre beziehung zum kleinzelligen hypothalamus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 93, 530546.CrossRefGoogle ScholarPubMed
Worthington, W.G., and Cathcart, R.S. (1963). Ependymal cilia: distribution and activity in the adult human brain. Science, 139, 221222.CrossRefGoogle ScholarPubMed