Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T02:28:25.119Z Has data issue: false hasContentIssue false

Radiologic Patterns of Necrosis After Proton Therapy of Skull Base Tumors

Published online by Cambridge University Press:  23 September 2014

Amine M. Korchi*
Affiliation:
Department of Diagnostic and Interventional Radiology, University Hospitals of Geneva, Geneva, Switzerland
Valentina Garibotto
Affiliation:
Department of Nuclear Medicine, University Hospitals of Geneva, Geneva, Switzerland
Karl-Olof Lovblad
Affiliation:
Service neuro-diagnostique et neuro-interventionnel DISIM, University Hospitals of Geneva, Geneva, Switzerland
Sven Haller
Affiliation:
Service neuro-diagnostique et neuro-interventionnel DISIM, University Hospitals of Geneva, Geneva, Switzerland
Damien C. Weber
Affiliation:
Department of Radiation Oncology, University Hospitals of Geneva, Geneva, Switzerland
*
Department of Diagnostic and Interventional Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland. Email: mohamed.a.korchi @hcuge.ch.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Discrimination between radiation necrosis and tumor progression after radiation therapy represents a radiologic challenge. The aim of our investigation is to identify patterns of radiation necrosis on brain magnetic resonance imaging (MRI) and positron emission tomography (PET) with Fluoroethyltyrosin (FET) after proton beam therapy (PBT) for skull base tumors.

Material and Methods:

Five consecutive patients with extra-axial neoplasms were included, presenting a total of eight radiation necrosis lesions (three clival chordomas; two petroclival chondrosarcomas; two women; mean age: 49 ± 18.2 years). Radiation necrosis was defined as the appearance of abnormal enhancement on MRI after PBT decreasing over time, and additional histopathologic confirmation in one patient. MRI and PET imaging were retrospectively analyzed by two experienced radiologists in consensus.

Results:

All lesions were localized close to the primary tumor in the field of irradiation. Three patients showed bilateral symmetrical lesions. All lesions showed T2 hyperintensity and T1 hypointensity. Cerebral blood volume (CBV) was reduced in all available studies. None of the lesions showed a restricted diffusion. FET-PET (three patients) showed a higher uptake in four out of five lesions; three of which had a mean tumor-to-background (TBRmean) uptake lower than 1.95 and FET uptake increasing over time and were correctly classified into radiation necrosis.

Conclusions:

Most radiation necroses were in direct continuity with the primary tumor mimicking tumor progression. The most consistent imaging findings for PBT radiation necrosis are low CBV without restricted diffusion and FET-PET TBRmean lower than 1.95 or increasing uptake over time. Bilateral symmetric involvement may be another indicator of radiation necrosis.

Résumé

RÉSUMÉContexte:

La distinction entre la nécrose due à l'irradiation et la progression de la tumeur après l'irradiation est un défi au point de vue radiologique. Le but de notre étude était d'identifier le profil radiologique de la nécrose radio-induite à l'IRM et à la tomographie par émission de positons (PET) à la fluoroéthyltyrosine (FET) après le traitement de tumeurs de la base du crâne par protonthérapie (PT).

Méthode:

Cinq patients consécutifs, atteints de tumeurs extra-axiales et présentant au total 8 lésions de nécroses radio-induites, ont été inclus dans l'étude (3 chordomes du clivus, 2 chondrosarcomas pétroclivaux). L'âge moyen des patients était de 49 ± 18,2 ans et 2 étaient des femmes. La nécrose due à l'irradiation était définie par l'apparition d'un rehaussement anormal qui diminuait avec le temps à l'IRM après la PT et par une confirmation histopathologique chez un patient. L'IRM et la PET ont été étudiées rétrospectivement en consensus par deux radiologistes expérimentés.

Résultats:

Toutes les lésions étaient localisées dans le champ d'irradiation, près de la tumeur primitive. Trois patients avaient des lésions bilatérales et symetriques. Toutes les lésions présentaient un hypersignal T2 et un hyposignal T1. Le volume sanguin cérébral (VSC) était diminué sur toutes les études disponibles. Aucune des lésions ne présentait une restriction de la diffusion. Le FET-PET de 3 patients montrait une captation plus élevée de 4 lésions sur les 5 imagées. Trois de celles-ci présentaient un rapport moyen de la captation tumorale sur celle du tissu avoisinant (TBRmean) plus faible que 1,95 avec une captation qui augmentait avec le temps; et ont été correctement classifiées comme étant de la nécrose radio-induite.

Conclusions:

La plupart des lésions de nécrose due à l'irradiation étaient en continuité directe avec la tumeur primitive mimant une progression de la tumeur. Les critères radiologiques les plus constants de la nécrose due à la PT sont un faible VSC sans restriction de la diffusion et une captation moyenne au FET-PET (TBRmean˂1.95) ou augmentant avec le temps. Une atteinte symétrique bilatérale peut être un autre indicateur de nécrose due à l'irradiation.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Khuntia, D, Tomé, WA, Mehta, MP. Radiation techniques in neuro-oncology. Neurotherapeutics. 2009;6(3):48799.CrossRefGoogle ScholarPubMed
2. Bouyon-Monteau, A, Habrand, JL, Datchary, J, et al. Is proton beam therapy the future of radiotherapy? Part I: clinical aspects. Cancer Radiother. 2010;14(8):72738.CrossRefGoogle ScholarPubMed
3. Brada, M, Pijls-Johannesma, M, De Ruysscher D. Proton therapy in clinical practice: current clinical evidence. J Clin Oncol. 2007;10;25(8):96570.CrossRefGoogle ScholarPubMed
4. Allen, AM, Pawlicki, T, Dong, L, et al. An evidence based review of proton beam therapy: The report of ASTRO's emerging technology committee. Radiother Oncol. 2012;103(1):811.CrossRefGoogle ScholarPubMed
5. Rogers, LR. Neurologic complications of radiation. Continuum (Minneapolis Minn). 2012;18(2):34354.Google ScholarPubMed
6. Brandsma, D, Stalpers, L, Taal, W, Sminia, P, van den Bent, MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):45361.CrossRefGoogle ScholarPubMed
7. Shah, R, Vattoth, S, Jacob, R, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):134359.CrossRefGoogle ScholarPubMed
8. Chen, J, Dassarath, M, Yin, Z, Liu, H, Yang, K, Wu, G. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat Oncol. 2011;6:128.CrossRefGoogle ScholarPubMed
9. Marks, JE, Baglan, RJ, Prassad, SC, Blank, WF. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys. 1981;7:24352.CrossRefGoogle ScholarPubMed
10. Burger, PC, Mahley, MS Jr, Dudka, L, Vogel, FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer. 1979;44:125672.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
11. Rahmathulla, G, Marko, NF, Weil, RJ. Cerebral radiation necrosis: A review of the pathobiology, diagnosis and management considerations. J Clin Neurosci. 2013;20(4):485502.CrossRefGoogle ScholarPubMed
12. Meyzer, C, Dhermain, F, Ducreux, D. at>A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiat Oncol. 2010;4;5:9.CrossRefGoogle Scholar
13. Galldiks, N, Stoffels, G, Filss, CP, et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med. 2012;53:136774.CrossRefGoogle Scholar
14. Kang, TW, Kim, ST, Byun, HS, et al. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis. Eur J Radiol. 2009;72:37080.CrossRefGoogle ScholarPubMed
15. Asao, C, Korogi, Y, Kitajima, M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:145560.Google ScholarPubMed
16. Friso, W, Hoefnagels, FW, Lagerwaard, FJ. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256:87887.Google Scholar
17. Essig, M, Waschkies, M, Wenz, F, Debus, J, Hentrich, HR, Knopp, MV. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology. 2003;228:1939.CrossRefGoogle ScholarPubMed
18. Sadeghi, N, Salmon, I, Decaestecker, C, et al. Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol. 2007; 28(3):45561.Google ScholarPubMed
19. Korchi, AM, Garibotto, V, Ansari, M, Merlini, L. Pseudoprogression after proton beam irradiation for a choroid plexus carcinoma in pediatric patient: MRI and PET imaging patterns. Childs Nerv Syst. 2013;29(3):50912.CrossRefGoogle ScholarPubMed
20. Garibotto, V, Haller, S, Vargas, MI, et al. Increased uptake of 18F-fluoroethyl-L-tyrosine in radiation-induced brain necrosis (abstract). Eur J Nucl Med Mol Imaging. 2012;39:S382.Google Scholar
21. Rachinger, W, Goetz, C, Pöpperl, G. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57(3):50511.CrossRefGoogle Scholar
22. Pöpperl, G, Götz, C, Rachinger, W, Gildehaus, FJ, Tonn, JC, Tatsch, K. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging. 2004;31(11):146470.CrossRefGoogle Scholar
23. Shah, AH, Snelling, B, Bregy, A, et al. Discriminating radiation necrosis from tumor progression in gliomas: a systematic review what is the best imaging modality? J Neurooncol. 2013;112(2):14152.CrossRefGoogle ScholarPubMed
24. Pöpperl, G, Kreth, FW, Herms, J, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med. 2006;47(3):393403.Google ScholarPubMed
25. Taylor, JS, Langston, JW, Reddick, WE, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys. 1996;36:125161.CrossRefGoogle ScholarPubMed
26. Weybright, P, Sundgren, PC, Maly, P, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol. 2005;185:14716.CrossRefGoogle ScholarPubMed