Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-s4zlt Total loading time: 0.262 Render date: 2022-10-07T12:55:58.832Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

PS2 - 171 Bmi1 Identifies Treatment-Refractory Stem Cells in Human Glioblastoma

Published online by Cambridge University Press:  18 October 2016

Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glioblastoma (GBM) is an aggressive brain tumor that is resistant to conventional radiation and cytotoxic chemotherapies. We hypothesize that brain tumor initiating cells (BTICs), a subpopulation of treatment-resistant cells with stem cell properties cause tumor relapse and a subset of neural stem cell genes regulate BTIC self-renewal, driving GBM recurrence. We adapted the existing treatment protocol for adults with primary GBM for in vivo treatment of immunocompromised mice engrafted with GBMs. Post-chemoradiotherapy, the recovered GFP+GBMs were profiled for self-renewal and expression of critical stem cell genes. Using invitro and invivo gain-of-function/loss-of-function experiments, we investigated the regulatory functions of Bmi1 in primary neural stem & progenitor cells (NSPCs) and GBM tumor formation. Finally, global RNA-Seq profiling was performed to understand the consequences of Bmi1 dysregulation on target gene expression. GBM cells showed an increase in Bmi1 levels post-chemoradiotherapy, suggesting the presence of a treatment-refractory BTICs. GFP+cells extracted from treated xenografts had higher self-renewal and BTIC marker expression. Although treated mice responded to therapy, we observed tumor relapse with increased Bmi1 expression. Knockdown of Bmi1 diminished self-renewal and proliferation of GBM cells and delayed tumorigenesis, highlighting a critical role for Bmi1 in tumor maintenance. Conversely, over-expressing Bmi1 in NSPCs failed to initiate tumor formation in vivo. Using high-throughput sequencing data, we generated a map of signaling pathways dysregulated in GBM that may lead to tumor recurrence. Our data confirms the existence of a rare treatment-refractory BTIC population with enhanced self-renewal capacity that escapes therapy and drives tumor relapse.

Type
Poster Viewing Sessions
Copyright
Copyright © The Canadian Journal of Neurological Sciences Inc. 2016 
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

PS2 - 171 Bmi1 Identifies Treatment-Refractory Stem Cells in Human Glioblastoma
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

PS2 - 171 Bmi1 Identifies Treatment-Refractory Stem Cells in Human Glioblastoma
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

PS2 - 171 Bmi1 Identifies Treatment-Refractory Stem Cells in Human Glioblastoma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *