Skip to main content Accessibility help
×
Home

PS1 - 169 Discovering the Treatment Refractory BTIC Population in Group 3 Medulloblastoma through Therapy Adapted Patient-Derived Human Mouse Xenograft (PDX) Model

  • D. Bakhshinyan (a1), T. Vijayakumar, B. Manoranjan, N. McFarlane, C. Venugopal, M. Singh, M. Qazi, P. Vora and S. Singh...

Abstract

Medulloblastoma (MB), the most common malignant pediatric brain tumor, is categorized into four molecular subgroups. Given the high rate of metastatic dissemination at diagnosis and recurrence in Group 3 MBs, these patients have the worst clinical outcome with a 5-year survivorship of approximately 50%. By adapting the existing COG (Children’s Oncology Group) Protocol for children with newly diagnosed high-risk MB, for treatment of immuno-deficient mice intracranially engrafted with human MB brain tumour initiating cells we aim to identify and characterize the treatment-refractory cell population in Group 3 MBs. Mice were sacrificed at multiple time points during the course of tumor development and therapy: (i) at engraftment; (ii) post-radiation; (iii) post-radiation and chemotherapy; and (iv) at MB recurrence. MB cell populations recovered separately from brains and spines were comprehensively profiled for gene expression analysis, stem cell and molecular features to generate a global, comparative profile of MB cells through therapy. We report a higher expression of CD133, Sox2 and Bmi1 in addition to increased self-renewal capacity following chemoradiotherapy treatment. The enrichment map constructed from global gene expression analysis showed an increase in pathways regulating self-renewal, DNA repair and chemoresistance post-therapy despite the apparent decrease in tumour size and vascularity. Additionally, from gene expression at MB recurrence, we identified a list of genes that negatively correlate with survival in patients diagnosed with Group 3 MB. A differential genomic profile of the “treatment-responsive” tumors against those that fail therapy may contribute to discovery of novel therapeutic approaches for the most aggressive subgroup of MB.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      PS1 - 169 Discovering the Treatment Refractory BTIC Population in Group 3 Medulloblastoma through Therapy Adapted Patient-Derived Human Mouse Xenograft (PDX) Model
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      PS1 - 169 Discovering the Treatment Refractory BTIC Population in Group 3 Medulloblastoma through Therapy Adapted Patient-Derived Human Mouse Xenograft (PDX) Model
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      PS1 - 169 Discovering the Treatment Refractory BTIC Population in Group 3 Medulloblastoma through Therapy Adapted Patient-Derived Human Mouse Xenograft (PDX) Model
      Available formats
      ×

Copyright

Corresponding author

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed