Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-25T01:48:30.477Z Has data issue: false hasContentIssue false

Progress in Clinical Neurosciences: Therapeutic Hypothermia in Severe Traumatic Brain Injury

Published online by Cambridge University Press:  02 December 2014

David A. Zygun
Department of Medicine, University of Calgary, Calgary, Alberta, Canada
Christopher J. Doig
Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
Roland N. Auer
Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
Kevin B. Laupland
Department of Medicine, University of Calgary, Calgary, Alberta, Canada Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
Garnette R. Sutherland
Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Severe traumatic brain injury (sTBI) is a relatively common problem with few therapies proven effective. Despite its use for over 50 years, therapeutic hypothermia has not gained widespread acceptance in the treatment of sTBI due to conflicting results from clinical trials. This review will summarize the current evidence from animal, mechanistic and clinical studies supporting the use of therapeutic hypothermia. In addition, issues of rewarming and optimal temperature will be discussed. Finally, the future of hypothermia in sTBI will be addressed.



Le traumatisme crânien sévère (TCS) est un problème relativement fréquent pour lequel peu de traitements se sont avérés efficaces. Bien que l'hypothermie thérapeutique soit utilisée depuis 50 ans, des essais cliniques dont les résultats sont discordants ont entravé son utilisation dans le traitement du TCS. Cette revue résume les données actuelles des études chez l'animal et chez l'humain ainsi que les études sur les mécanismes en cause appuyant son utilisation. De plus, le réchauffement et la température idéale sont discutés. Finalement, l'avenir de l'hypothermie dans le traitement du TCS est abordé.

Review Article
Copyright © The Canadian Journal of Neurological 2003


1. Kraus, J, McArthur, D. Epidemiology of brain injury. In: Cooper, PR, Golfinos, JG, (Eds). Head Injury. New York: McGraw-Hill, 2000:126.Google Scholar
2. Fay, T. Observations on generalized refrigeration in cases of severe cerebral trauma. Assoc Res Nerv Ment Dis Proc 1943; 24:611619.Google Scholar
3. Clifton, GL, Jiang, JY, Lyeth, BG, et al. Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 1991;11:114121.Google Scholar
4. Palmer, AM, Marion, DW, Botscheller, ML, Redd, EE. Therapeutic hypothermia is cytoprotective without attenuating the traumatic brain injury-induced elevations in interstitial concentrations of aspartate and glutamate. J Neurotrauma 1993;10:363372.Google Scholar
5. Lyeth, BG, Jiang, JY, Robinson, SE, Guo, H, Jenkins, LW. Hypothermia blunts acetylcholine increase in CSF of traumatically brain injured rats. Mol Chem Neuropathol 1993;18:247256.Google Scholar
6. Dietrich, WD, Feng, ZC, Leistra, H, Watson, BD, Rosenthal, M. Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab 1994;14:2028.Google Scholar
7. Bramlett, HM, Green, EJ, Dietrich, WD, et al. Posttraumatic brain hypothermia provides protection from sensorimotor and cognitive behavioral deficits. J Neurotrauma 1995;12:289298.Google Scholar
8. Mori, K, Maeda, M, Miyazaki, M, Iwase, H. Effects of mild (33 degrees C) and moderate (29 degrees C) hypothermia on cerebral blood flow and metabolism, lactate, and extracellular glutamate in experimental head injury. Neurol Res 1998;20:719726.Google Scholar
9. Ebmeyer, U, Safar, P, Radovsky, A, et al. Moderate hypothermia for 48 hours after temporary epidural brain compression injury in a canine outcome model. J Neurotrauma 1998;15:323336.CrossRefGoogle Scholar
10. Pomeranz, S, Safar, P, Radovsky, A, et al. The effect of resuscitative moderate hypothermia following epidural brain compression on cerebral damage in a canine outcome model. J Neurosurg 1993;79:241251.CrossRefGoogle Scholar
11. Clasen, RA, Pandolfi, S, Stuart, D, Russell, JL. Hypothermia and hypotension in experimental cerebral injury. J Neuropathol Exp Neurol 1968;27:127128.Google ScholarPubMed
12. Bramlett, HM, Dietrich, WD, Green, EJ. Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 1999;16:10351047.Google Scholar
13. Matsushita, Y, Bramlett, HM, Alonso, O, Dietrich, WD. Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Crit Care Med 2001;29:20602066.Google Scholar
14. Yamamoto, M, Marmarou, CR, Stiefel, MF, Beaumont, A, Marmarou, A. Neuroprotective effect of hypothermia on neuronal injury in d i ffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 1999;16:487500.Google Scholar
15. Robertson, CL, Clark, RS, Dixon, CE, et al. No long-term benefit from hypothermia after severe traumatic brain injury with secondary insult in rats. Crit Care Med 2000;28:32183223.Google Scholar
16. Bering, E. Effect of body temperature change on cerebral oxygen consumption of the intact monkey. Am J Physiol 1961;200:417419.Google Scholar
17. Sutherland, GR, Peeling, J, Sutherland, E, et al. Magnetic resonance imaging and 31P spectroscopy study of the effect of temperature on ischemic brain injury. Can J Neurol Sci 1992;19:317325.Google Scholar
18. Kaibara, T, Sutherland, GR, Colbourne, F, Tyson, RL. Hypothermia: depression of tricarboxylic acid cycle flux and evidence for pentose phosphate shunt upregulation. J Neurosurg 1999;90:339347.Google Scholar
19. Gupta, AK, Al-Rawi, PG, Hutchinson, PJ, Kirkpatrick, PJ. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth 2002;88:188192.Google Scholar
20. Globus, MY-T, Busto, R, Lin, B, Schnippering, H, Ginsberg, MD. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem 1995;65:12501256.Google Scholar
21. Koizumi, H, Fujisawa, H, Ito, H, et al. Effects of mild hypothermia on cerebral blood flow-independent changes in cortical extracellular levels of amino acids following contusion trauma in the rat. Brain Res 1997;747:304312.CrossRefGoogle ScholarPubMed
22. Yamaguchi, S, Nakahara, K, Miyagi, T, Tokutomi, T, Shigemori, M. Neurochemical monitoring in the management of severe head-injured patients with hypothermia. Neurol Res 2000;22:657664.Google Scholar
23. Marion, DW, Penrod, LE, Kelsey, SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997;336:540546.Google Scholar
24. Soukup, J, Zauner, A, Doppenberg, EM, et al. Relationship between brain temperature, brain chemistry and oxygen delivery after severe human head injury: the effect of mild hypothermia. Neurol Res 2002;24:161168.Google Scholar
25. Shiozaki, T, Kato, A, Taneda, M, et al. Little benefit from mild hypothermia therapy for severely head injured patients with low intracranial pressure. J Neurosurg 1999;91:185191.Google Scholar
26. Mokri, B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 2001;56:17461748.Google Scholar
27. Bigelow, WG, Callaghan, JC, Hopps, JA. General hypothermia for experimental intracardiac surgery. Ann Surg 1950;132:531537.Google Scholar
28. Rosomoff, H. Brain volume and cerebrospinal fluid pressure during hypothermia. Am J Physiol 1955; 183:19.Google Scholar
29. Laskowski, E. Experimental study of the effects of hypothermia on local brain injury. Neurology 1960; 10:499505.Google Scholar
30. Smith, SL, Hall, ED. Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact in the rat. J Neurotrauma 1996;13:19.Google Scholar
31. Toulmond, S, Rothwell, NJ. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res 1995;671:261266.CrossRefGoogle ScholarPubMed
32. Holmin, S, Almqvist, P, Lendahl, U, Mathiesen, T. Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur J Neurosci 1997;9:6575.Google Scholar
33. Goss, JR, Styren, SD, Miller, PD, et al. Hypothermia attenuates the normal increase in interleukin 1β RNA and nerve growth factor following traumatic brain injury in the rat. J Neurotrauma 1995;12:159167.Google Scholar
34. Whalen, MJ, Carlos, TM, Clark, RS, et al. The relationship between brain temperature and neutrophil accumulation after traumatic brain injury in rats. Acta Neurochir Suppl (Wien) 1997;70:260261.Google Scholar
35. Chatzipanteli, K, Alonso, OF, Kraydieh, S, Dietrich, WD. Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J Cereb Blood Flow Metab 2000;20:531542.Google Scholar
36. Xu, R-X, Nakamura, T, Nagao, S, et al. Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia. Neurosurgery 1998;43:107114.Google Scholar
37. Koizumi, H, Povlishock, JT. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. J Neurosurg 1998;89:303309.Google Scholar
38. Suehiro, E, Povlishock, JT. Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A. J Neurosurg 2001;94:493498.Google Scholar
39. Busto, R, Dietrich, WD, Globus, MY-T, et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987;7:729738.Google Scholar
40. Graham, DI, Adams, JH, Doyle, D. Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci 1978;39:213234.Google Scholar
41. Bouma, GJ, Muizelaar, JP, Stringer, WA, et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 1992;77:360368.Google Scholar
42. Shiozaki, T, Sugimoto, H, Taneda, M, et al. Effect of mild hypothermia on uncontrolled intracranial hypertension after severe head injury. J Neurosurg 1993;79:363368.Google Scholar
43. Clifton, GL, Allen, S, Barrodale, P, et al. Aphase II study of moderate hypothermia in severe brain injury. J Neurotrauma 1993;10:263271.Google Scholar
44. Shiozaki, T, Hayakata, T, Taneda, M, et al. A multicenter prospective randomized controlled trial of the efficacy of mild hypothermia for severely head injured patients with low intracranial pressure. Mild Hypothermia Study Group in Japan. J Neurosurg 2001;94:5054.Google Scholar
45. Aibiki, M, Maekawa, S, Yokono, S. Moderate hypothermia improves imbalances of thromboxane A2 and prostaglandin I2 production after traumatic brain injury in humans. Crit Care Med 2000;28:39023906.Google Scholar
46. Jiang, J, Yu, M, Zhu, C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J Neurosurg 2000;93:546549.Google Scholar
47. Clifton, GL, Miller, ER, Choi, SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001;344:556563.CrossRefGoogle ScholarPubMed
48. Clifton, GL, Choi, SC, Miller, ER, et al. Intercenter variance in clinical trials of head trauma – experience of the National Acute Brain Injury Study: Hypothermia. J Neurosurg 2001;95:751755.Google Scholar
49. Gadkary, CS, Alderson, P, Signorini, DF. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev 2002:CD001048.CrossRefGoogle ScholarPubMed
50. Narayan, RK. Hypothermia for traumatic brain injury – a good idea proved ineffective. N Engl J Med 2001;344:602603.Google Scholar