Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T06:47:37.507Z Has data issue: false hasContentIssue false

New Insights into the Neuropathogenesis of Molybdenum Cofactor Deficiency

Published online by Cambridge University Press:  02 December 2014

Michael S. Salman
Affiliation:
Department of Neurology, Hospital for Sick Children, Toronto, ON, Canada
Cameron Ackerley
Affiliation:
Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, ON, Canada
Christof Senger
Affiliation:
Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, ON, Canada
Laurence Becker
Affiliation:
Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, ON, Canada Department of Pediatrics, University of Toronto, Toronto, ON, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Molybdenum cofactor deficiency (MOCOD) is a rare, progressive neurodegenerative disorder caused by sulphite oxidase enzyme deficiency. The neuropathological findings are consistent with a toxic insult to the brain that causes severe neuronal loss, reactive astrogliosis and spongiosis. The mechanisms responsible for these changes are unknown.

Methods:

The case is a male infant with MOCOD who died at nine months of age from pneumonia. At autopsy, a complete neuropathological examination was performed including conventional immunohistochemical staining. In addition, brain sections were stained cytochemically with shikata and orcein which stain for disulphide bonds. The elemental composition of cortical cells was then analyzed in the scanning electron microscope using backscatter electron imaging and energy dispersive X-ray spectrometry.

Results:

Neurons demonstrated cytoplasmic staining with shikata and orcein cytochemically when compared to control sections. Energy dispersive X-ray spectrometry analysis of these neurons confirmed the presence of excess sulphur and unexpectedly revealed excess magnesium accumulation. None of these findings was found in an age-matched control.

Conclusions:

In MOCOD we found abnormal accumulation of sulphur and magnesium in neurons. It is postulated that sulphur-containing compound(s) that are formed as a result of MOCOD cause excitotoxic neuronal injury in the presence of excess magnesium.

Résumé:

RÉSUMÉ:Introduction:

La déficience en cofacteur à molybdène (DCOMO) est une maladie neurodégénérative progressive rare causée par une déficience en sulphite oxydase. Les observations neuropathologiques sont compatibles avec une lésion toxique du cerveau qui cause une perte neuronale sévère, une astrogliose et une spongiose réactionnelles. Les mécanismes responsables de ces changements sont inconnus.

Observation:

Il s'agit d'un enfant mâle atteint de DCOMO qui est décédé à l'âge de neuf mois de pneumonie. Àl'autopsie, un examen neuropathologique complet a été effectué, ainsi que des études conventionnelles de coloration immunohistochimiques et des colorations cytochimiques au shikata et à l'orcéine qui colorent les ponts disulphures. La composition élémentaire des cellules corticales a ensuite été analysée au microscope électronique à balayage utilisant la scintigraphie électronique radiodiffusée et la spectrométrie de rayons X induits par particules chargées.

Résultats:

Contrairement aux sections contrôles, les neurones présentaient une coloration cytoplasmique au shikata et à l'orcéine. L'analyse spectrométrique de ces neurones a confirmé la présence d'un excès de soufre et a montré la présence insoupçonnée d'un excès de magnésium. Aucune de ces observations n'a été retrouvée chez des contrôles appariés pour l'âge.

Conclusions:

Dans le DCOMO, nous avons observé une accumulation anormale de soufre et de magnésium dans les neurones. Nous postulons que le(s) composé(s) soufré(s) qui sont formés dans la DCOMO causent une lésion neuronale excitotoxique en présence d'un excès de magnésium.

Type
Case Report
Copyright
Copyright © Canadian Neurological Sciences Federation 2002

References

1. Johnson, JL, Wadman, SK. Molybdenum cofactor deficiency andisolated sulphite oxidase deficiency. In: Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, eds. The Metabolic Basis of Inherited Disease, 7th Ed. New York: McGraw-Hill, 1995: 22712283.Google Scholar
2. Sardesai, VM. Molybdenum: an essential trace element. Nutr ClinPrac 1993; 8: 277281.Google ScholarPubMed
3. Hughes, EF, Fairbanks, L ,Simmonds, HA ,Robinson, RO. Molybdenum cofactor deficiency – phenotypic variability in a family with a late-onset variant. Dev Med Child Neurol 1998; 40: 5761.CrossRefGoogle Scholar
4. Feng, G, Tintrup, H, Kirsh, J, et al. Dual requirement for gephyrin inglycine receptor clustering and molybdoenzyme activity. Science 1998; 282:13211324.CrossRefGoogle Scholar
5. Barth, PG, Beemer, FA, Cats, BP, Duran, M. Neuropathologicalfindings in a case of combined deficiency of sulphite oxidase and xanthine dehydrogenase. Virchows Arch (Pathol Anat) 1985; 408: 105106.CrossRefGoogle Scholar
6. Roth, A, Nogues, C, Monnet, JP, Ogier, H, Saudubray, JM. Anatomo-pathological findings in a case of combined deficiency of sulphite oxidase and xanthine oxidase with a defect of molybdenumcofactor. Virchows Archiv (Pathol Anat) 1985; 405: 379386.CrossRefGoogle Scholar
7. Rosemblum, WI. Neuropathologic changes in a case of sulphiteoxidase deficiency. Neurology 1968; 18: 11871196.CrossRefGoogle Scholar
8. Cameron, IL, Sheridan, PJ, Smith, NR. An x-ray microanalysis studyof differences in concentration of elements in brain cells due to opiates, cell type, and subcellular location. J Neurosci Res 1978; 3: 397410.Google Scholar
9. Shikata, T, Uzawa, T, Yoshiwara, N, Akatsuka, T, Yamazaki, S. Staining methods for Australia antigen in paraffin section-detection of cytoplasm inclusion. Jap J Exp Med 1974;44:2536.Google Scholar
10. Deodhar, KP Tapp, E, Scheuer, P Orcein staining of hepatitis Bantigen in paraffin sections of liver biopsies. J Clin Path 1975;28(1):6670.CrossRefGoogle Scholar
11. Ingram, P, Shelbourne, JD, Roggli, VL. Microprobe Analysis inMedicine. Hemisphere Publishers, Washington, DC, 1989.Google Scholar
12. Schulz, DM, Giordano, DA, Schulz, DH. Weights of organs of fetusesand infants. Arch Pathol 1962;74:244.Google Scholar
13. Appignani, BA, Kaye, EM, Wolpert, SM. CT and MRI appearance ofthe brain in two children with molybdenum cofactor deficiency. AJNR Am J Neurol Radiol 1996;17:317320.Google Scholar
14. Salvan, A, Chabrol, B, Lamoureux, S, et al. In vivo brain proton MRspectroscopy in a case of molybdenum cofactor deficiency. Pediatr Radiol 1999;29:846848.Google Scholar
15. Provias, J, Ackerley, CA, Jay, V, Becker, LE. Pathogenesis ofmineralization in Sturge-Weber syndrome: analysis of resected cortex, utilizing light microscopy, stem, and X-ray microprobeanalysis. Can J Neurol Sci 1993;20:84.Google Scholar
16. Percy, AK, Mudd, SH, Irreverre, F, Laster, L. Sulphite oxidasedeficiency: sulfate esters in tissues and urine. Biochem Med 1968;2:198208.Google Scholar
17. Reist, M, Marshall, K, Jenner, P, Halliwell, B. Toxic effects of sulphitein combination with peroxynitrite on neuronal cells. J Neurochem 1998;71:24312438.CrossRefGoogle ScholarPubMed
18. Olney, JW, Misra, CH, Gubareff, T. Cysteine-S-sulphate: braindamagingmetabolitein sulphite oxidase deficiency. JNeuropathol Exp Neurol 1975;34:167177.CrossRefGoogle Scholar
19. Frandsen, A, Schousboe, A, Griffiths, R. Cytotoxic actions and effectson intracellular calcium and cGMP concentrations of sulphur-containing excitatory amino acids in cultured cerebral cortical neurons. J Neurosci Res 1993 34(3):331339.CrossRefGoogle Scholar
20. Andine, P, Orwar, O, Jacobson, I, Sandburg, M, Hagberg, H. Extracellular acidic sulphur-containing amino acids and gamma-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteine sulfinate in the CA1 of the rat hippocampus. JNeurochem 1991;57(1):230236.Google Scholar
21. Anderson, KA, Talcott, PA. Magnesium. In: Seiler, HG, Sigel, A, Sigel, H, eds. Handbook on metals in clinical and analytical chemistry. New York, Basel, Hong Kong: Marcel Dekker, 1994;453466.Google Scholar
22. Hartnett, KA, Stout, AK, Rajdev, S, et al. NMDA receptor-mediatedneurotoxicity: a paradoxical requirement for extracellular magnesium in sodium and calcium-free solutions in rat cortical neurons in vitro. J Neurochem 1997;68(5):18361845.CrossRefGoogle Scholar
23. Gitzelmann, R, Steinmann, B, Van den Berghe, G. Chapter 23. In:Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, eds. The MetabolicBasis of Inherited Disease, 7th Ed. New York: McGraw-Hill 1995: 912.,Google Scholar