Skip to main content Accessibility help

Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies

  • Pengyue Zhang (a1) (a2), Jia Xianglei (a1), Yang Hongbo (a1), Jichuan Zhang (a1) and Ce Xu (a1)...


Early locomotor exercise after stroke has attracted a great deal of attention in clinical and animal research in recent years. A series of animal studies showed that early locomotor exercise poststroke could protect against ischemic brain injury and improve functional outcomes through the promotion of angiogenesis, inhibition of acute inflammatory response and neuron apoptosis, and protection of the blood-brain barrier. However, to date, the clinical application of early locomotor exercise poststroke was limited because some clinicians have little confidence in its effectiveness. Here we review the current progress of early locomotor exercise poststroke in animal models. We hope that a comprehensive awareness of the early locomotor exercise poststroke may help to implement early locomotor exercise more appropriately in treatment for ischemic stroke.

Neuroprotection conférée par l’exercice locomoteur précoce après un accident vasculaire cérébral : données tirées des études chez l’animal. L’exercice locomoteur précoce après un accident vasculaire cérébral (AVC) a retenu l’attention en recherche clinique et en recherche chez l’animal au cours des dernières années. Plusieurs études chez l’animal ont montré que l’exercice locomoteur précoce après un AVC protégerait contre une lésion ischémique du cerveau et pourrait améliorer l’issue fonctionnelle en favorisant l’angiogenèse, l’inhibition de la réponse inflammatoire aiguë et l’apoptose neuronale ainsi que la protection de la barrière hémato-encéphalique. Cependant, à ce jour, le recours en clinique à l’exercice locomoteur précoce après un AVC a été limité parce que certains cliniciens ont peu confiance en son efficacité. Nous revoyons les progrès actuels dans le domaine de l’exercice locomoteur précoce après un AVC chez des modèles animaux. Nous espérons qu’une sensibilisation à l’exercice locomoteur précoce après un AVC pourra favoriser une utilisation de l’exercice locomoteur précoce de façon plus appropriée dans le traitement de l’AVC ischémique.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies
      Available formats


Corresponding author

Correspondence to: Jichuan Zhang or Ce Xu, Medical Faculty, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China. Email:,


Hide All
1. Knecht, S, Hesse, S, Oster, P. Rehabilitation after stroke. Dtsch Arztebl Int. 2011;108:600.
2. The Atlas of Heart Disease and Stroke 2011. Available from: Accessed March 29, 2014.
3. Pérez de la Ossa, N, Dávalos, A. Neuroprotection in cerebral infarction: the opportunity of new studies. Cerebrovasc Dis. 2007;24(Suppl 1):153-156.
4. Jorgensen, HS, Nakayama, H, Raaschou, HO, et al. Outcome and time course of recovery in stroke. Part II: time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:406-412.
5. Kreisel, SH, Hennerici, MG, Bazner, H. Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis. 2007;23:243-255.
6. Choe, MA, An, GJ, Lee, YK, et al. Effect of early low-intensity exercise on rat hind-limb muscles following acute ischemic stroke. Biol Res Nurs. 2006;7:163-174.
7. Bernhardt, J, Dewey, H, Thrift, A, Collier, J, Donnan, G et al. A very early rehabilitation trial for stroke (avert): phase II safety and feasibility. Stroke. 2008;39:390-396.
8 Dragert, K, Zehr, EP. High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Exp Brain Res. 2012;225:93-104.
9. Shimodozono, M, Noma, T, Nomoto, Y, et al. Benefits of a repetitive facilitative exercise program for the upper paretic extremity after subacute stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2012;27:296-305.
10. Stoller, O, de Bruin, ED, Knols, RH, et al. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurol. 2012;12:45.
11. Management CGFA Clinical guidelines for acute stroke management. Available from: (Accessed March 29, 2014).
12. McCluskey, A, Vratsistas-Curto, A, Schurr, K. Barriers and enablers to implementing multiple stroke guideline recommendations: a qualitative study. BMC Health Serv Res. 2013;13:323.
13. Stinear, C, Ackerley, S, Byblow, W. Rehabilitation is initiated early after stroke, but most motor rehabilitation trials are not: a systematic review. Stroke. 2013;44:2039-2045.
14. Ada, L, Dean, CM, Morris, ME. Supported treadmill training to establish walking in non-ambulatory patients early after stroke. BMC Neurol. 2007;7:29.
15. Ada, L, Dean, CM, Morris, ME, et al. Randomized trial of treadmill walking with body weight support to establish walking in subacute stroke: the MOBILISE trial. Stroke. 2010;41:1237-1242.
16. Zhang, P, Zhang, Y, Zhang, J, et al. Early exercise protects against cerebral ischemic injury through inhibiting neuron apoptosis in cortex in rats. Int J Mol Sci. 2013;14:6074-6089.
17. Matsuda, F, Sakakima, H, Yoshida, Y. The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf). 2011;201:275-287.
18. Seo, HG, Kim, DY, Park, HW, et al. Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J Korean Med Sci. 2010;25:1638-1645.
19. Zhang, P, Zhang, Q, Pu, H, et al. Very early-initiated physical rehabilitation protects against ischemic brain injury. Front Biosci (Elite Ed). 2012;4:2476-2489.
20. Lee, SU, Kim, DY, Park, SH, et al. Mild to moderate early exercise promotes recovery from cerebral ischemia in rats. Can J Neurol Sci. 2009;36:443-449.
21. Broughton, BR, Reutens, DC, Sobey, CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331-e339.
22. Humm, JL, Kozlowski, DA, James, DC, et al. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 1998;783:286-292.
23. Kozlowski, DA, James, DC, Schallert, T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16:4776-4786.
24. Bland, ST, Pillai, RN, Aronowski, J, et al. Early overuse and disuse of the affected forelimb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats. Behav Brain Res. 2001;126:33-41.
25. Yang, YR, Wang, RY, Wang, PS, Yu, SM. Treadmill training effects on neurological outcome after middle cerebral artery occlusion in rat. Can J Neurol Sci. 2003;30:252-258.
26. Shimada, H, Hamakawa, M, Ishida, A, et al. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats. Behav Brain Res. 2012;243C:21-27.
27. Marin, R, Williams, A, Hale, S, et al. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav. 2003;80:167-175.
28. Yang, YR, Wang, RY, Wang, PS. Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett. 2003;339:91-94.
29. Nielsen, RK, Samson, KL, Simonsen, D, Jensen, W. Effect of early and late rehabilitation onset in a chronic rat model of ischemic stroke- assessment of motor cortex signaling and gait functionality over time. IEEE Trans Neural Syst Rehabil Eng. 2013;21:1006-1015.
30. Wang, RY, Yu, SM, Yang, YR. Treadmill training effects in different age groups following middle cerebral artery occlusion in rats. Gerontology. 2005;51:161-165.
31. Barone, FC, Feuerstein, GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19:819-834.
32. Wang, Q, Tang, XN, Yenari, MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184:53-68.
33. Lucas, SM, Rothwell, NJ, Gibson, RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(Suppl 1):S232-S240.
34. Nakajima, K, Yamamoto, S, Kohsaka, S, et al. Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci Lett. 2008;436:331-334.
35. Stoll, G, Jander, S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol. 1999;58:233-247.
36. Dheen, ST, Kaur, C, Ling, EA. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14:1189-1197.
37. Barger, SW, Goodwin, ME, Porter, MM, et al. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem. 2007;101:1205-1213.
38. Gibson, CL, Coughlan, TC, Murphy, SP. Glial nitric oxide and ischemia. Glia. 2005;50:417-426.
39. Offner, H, Subramanian, S, Parker, SM, et al. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26:654-665.
40. Eltzschig, HK, Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17:1391-1401.
41. Iadecola, C, Zhang, F, Casey, R, et al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997;17:9157-9164.
42. Hewlett, KA, Corbett, D. Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience. 2006;141:27-33.
43. Beavers, KM, Brinkley, TE, Nicklas, BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta. 2010;411:785-793.
44. Botta, A, Laher, I, Beam, J, et al. Short term exercise induces PGC-1alpha, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS One. 2013;8:e70248.
45. You, T, Arsenis, NC, Disanzo, BL, et al. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 2013;43:243-256.
46. Gomes, DSS, Simoes, PS, Mortara, RA, et al. Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflammation. 2013;10:61.
47. Ding, YH, Young, CN, Luan, X, et al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol. 2005;109:237-246.
48. Zhang, A, Bai, Y, Hu, Y, et al. The effects of exercise intensity on p-NR2B expression in cerebral ischemic rats. Can J Neurol Sci. 2012;39:613-618.
49. Zhang, Y, Zhang, P, Shen, X, et al. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int J Mol Sci. 2013;14:11096-11112.
50. Spatz, M. Past and recent BBB studies with particular emphasis on changes in ischemic brain edema: dedicated to the memory of Dr. Igor Klatzo. Acta Neurochir Suppl. 2010;106:21-27.
51. Kaczorowski, DJ, Mollen, KP, Edmonds, R, et al. Early events in the recognition of danger signals after tissue injury. J Leukoc Biol. 2008;83:546-552.
52. Wang, Y, Ge, P, Zhu, Y. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators Inflamm. 2013;2013:124614.
53. Winters, L, Winters, T, Gorup, D, et al. Expression analysis of genes involved in TLR2-related signaling pathway: inflammation and apoptosis after ischemic brain injury. Neuroscience. 2013;238:87-96.
54. Gleeson, M, Mcfarlin, B, Flynn, M. Exercise and Toll-like receptors. Exerc Immunol Rev. 2006;12:34-53.
55. Flynn, MG, Mcfarlin, BK. Toll-like receptor 4: link to the anti-inflammatory effects of exercise? Exerc Sport Sci Rev. 2006;34:176-181.
56. Zwagerman, N, Plumlee, C, Guthikonda, M, et al. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res. 2010;32:123-126.
57. Ma, Y, He, M, Qiang, L. Exercise therapy downregulates the overexpression of TLR4, TLR2, MyD88 and NF-kappaB after cerebral ischemia in rats. Int J Mol Sci. 2013;14:3718-3733.
58. Ribe, EM, Serrano-Saiz, E, Akpan, N, et al. Mechanisms of neuronal death in disease: defining the models and the players. Biochem J. 2008;415:165-182.
59. Yuan, J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 2009;14:469-477.
60. Broughton, BRS, Reutens, DC, Sobey, CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331-e339.
61. Martinou, JC, Dubois-Dauphin, M, Staple, JK, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994;13:1017-1030.
62. Zhao, H, Yenari, MA, Cheng, D, et al. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab. 2004;24:681-692.
63. Haack, D, Luu, H, Cho, J, et al. Exercise reverses chronic stress-induced Bax oligomer formation in the cerebral cortex. Neurosci Lett. 2008;438:290-294.
64. Kavazis, AN, Smuder, AJ, Min, K, et al. Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. Am J Physiol Heart Circ Physiol. 2010;299:H1515-H1524.
65. Quindry, J, French, J, Hamilton, K, et al. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol. 2005;40:416-425.
66. Kavazis, AN, Mcclung, JM, Hood, DA, et al. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol. 2008;294:H928-H935.
67. Um, HS, Kang, EB, Leem, YH, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med. 2008;22:529-539.
68. French, JP, Hamilton, KL, Quindry, JC, et al. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J. 2008;22:2862-2871.
69. Ghosh, S, Khazaei, M, Moien-Afshari, F, et al. Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice. Am J Physiol Renal Physiol. 2009;296:F700-F708.
70. Kwak, HB, Song, W, Lawler, JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20:791-793.
71. Zhang, L, Hu, X, Luo, J, et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci. 2013;14:46.
72. Sakakima, H, Khan, M, Dhammu, TS, et al. Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci. 2012;30:383-396.
73. Lee, MH, Kim, H, Kim, SS, et al. Treadmill exercise suppresses ischemia-induced increment in apoptosis and cell proliferation in hippocampal dentate gyrus of gerbils. Life Sci. 2003;73:2455-2465.
74. Sim, YJ, Kim, H, Kim, JY, et al. Long-term treadmill exercise overcomes ischemia-induced apoptotic neuronal cell death in gerbils. Physiol Behav. 2005;84:733-738.
75. Sim, YJ, Kim, SS, Kim, JY, Shin, MS, Kim, CJ. Treadmill exercise improves short-term memory by suppressing ischemia-induced apoptosis of neuronal cells in gerbils. Neurosci Lett. 2004;372:256-261.
76. Ang, ET, Gomez-Pinilla, F. Potential therapeutic effects of exercise to the brain. Curr Med Chem. 2007;14:2564-2571.
77. Poduslo, JF, Curran, GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36:280-286.
78. Quirie, A, Hervieu, M, Garnier, P, et al. Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One. 2012;7:e44218.
79. Ding, Q, Ying, Z, Gomez-Pinilla, F. Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 2011;192:773-780.
80. Griesbach, GS, Hovda, DA, Gomez-Pinilla, F. Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 2009;1288:105-115.
81. Sartori, CR, Vieira, AS, Ferrari, EM, et al. The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience. 2011;180:9-18.
82. Liu, N, Huang, H, Lin, F, et al. Effects of treadmill exercise on the expression of netrin-1 and its receptors in rat brain after cerebral ischemia. Neuroscience. 2011;194:349-358.
83. Sun, J, Ke, Z, Yip, SP, Hu, XL, Zheng, XX, Tong, KY. Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. Biomed Res Int. 2014;2014:925762.
84. Ke, Z, Yip, SP, Li, L, Zheng, XX, Tong, KY. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One. 2011;6:e16643.
85. Mizutani, K, Sonoda, S, Karasawa, N, et al. Effects of exercise after focal cerebral cortex infarction on basal ganglion. Neurol Sci. 2013;34:861-867.
86. Ke, Z, Yip, SP, Li, L, Zheng, XX, Tam, WK, Tong, KY. The effects of voluntary, involuntary, and forced exercises on motor recovery in a stroke rat model. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8223-8226.
87. Sun, J, Ke, Z, Yip, SP, Hu, XL, Zheng, XX, Tong, KY. Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. Biomed Res Int. 2014;2014:925762.
88. Kim, MW, Bang, MS, Han, TR, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2005;1052:16-21.
89. Chung, JY, Kim, MW, Bang, MS, et al. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise. PLoS One. 2013;8:e52461.
90. Chang, HC, Yang, YR, Wang, PS, et al. Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc. 2011;43:2274-2280.
91. Ohwatashi, A, Ikeda, S, Harada, K, et al. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat. EXCLI J. 2013:693-700.
92. Llambi, F, Causeret, F, Bloch-Gallego, E, et al. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 2001;20:2715-2722.
93. Tang, X, Jang, SW, Okada, M, et al. Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol. 2008;10:698-706.
94. Dent, EW, Barnes, AM, Tang, F, et al. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci. 2004;24:3002-3012.
95. Wilson, BD, Ii, M, Park, KW, et al. Netrins promote developmental and therapeutic angiogenesis. Science. 2006;313:640-644.
96. Sun, Y, Jin, K, Xie, L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843-1851.
97. Slevin, M, Kumar, P, Gaffney, J, et al. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (Lond). 2006;111:171-183.
98. Hayashi, T, Noshita, N, Sugawara, T, et al. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23:166-180.
99. Beck, H, Acker, T, Wiessner, C, et al. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol. 2000;157:1473-1483.
100. Krupinski, J, Stroemer, P, Slevin, M, et al. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. Neuroreport. 2003;14:1171-1176.
101. Jiang, Q, Zhang, ZG, Ding, GL, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage. 2005;28:698-707.
102. Hayashi, T, Deguchi, K, Nagotani, S, et al. Cerebral ischemia and angiogenesis. Curr Neurovasc Res. 2006;3:119-129.
103. Manoonkitiwongsa, PS, Jackson-Friedman, C, Mcmillan, PJ, et al. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J Cereb Blood Flow Metab. 2001;21:1223-1231.
104. Petraglia, AL, Marky, AH, Walker, C, et al. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery. 2010;66:165-172.
105. Li, Q, Ford, MC, Lavik, EB, et al. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res. 2006;84:1656-1668.
106. Wei, L, Erinjeri, JP, Rovainen, CM, et al. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32:2179-2184.
107. Krupinski, J, Kaluza, J, Kumar, P, et al. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794-1798.
108. Arenillas, JF, Sobrino, T, Castillo, J, et al. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med. 2007;9:205-212.
109. Ergul, A, Alhusban, A, Fagan, SC. Angiogenesis: a harmonized target for recovery after stroke. Stroke. 2012;43:2270-2274.
110. Ma, Y, Qiang, L, He, M. Exercise therapy augments the ischemia-induced proangiogenic state and results in sustained improvement after stroke. Int J Mol Sci. 2013;14:8570-8584.
111. Hu, X, Zheng, H, Yan, T, et al. Physical exercise induces expression of CD31 and facilitates neural function recovery in rats with focal cerebral infarction. Neurol Res. 2010;32:397-402.
112. Zhang, P, Yu, H, Zhou, N, et al. Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model. J Neuroeng Rehabil. 2013;10:43.
113. Zheng, Q, Zhu, D, Bai, Y, et al. Exercise improves recovery after ischemic brain injury by inducing the expression of angiopoietin-1 and Tie-2 in rats. Tohoku J Exp Med. 2011;224:221-228.
114. Gertz, K, Priller, J, Kronenberg, G, et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 2006;99:1132-1140.
115. Yang, YR, Chang, HC, Wang, PS, Wang, RY. Motor performance improved by exercises in cerebral ischemic rats. J Mot Behav. 2012;44:97-103.
116. Tian, S, Zhang, Y, Tian, S, et al. Early exercise training improves ischemic outcome in rats by cerebral hemodynamics. Brain Res. 2013;1533:114-121.
117. Liu, S, Wang, J, Zhu, D, et al. Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci. 2003;23:732-736.
118. van Praag, H, Schinder, AF, Christie, BR, et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030-1034.
119. Nakatomi, H, Kuriu, T, Okabe, S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110:429-441.
120. Font, MA, Arboix, A, Krupinski, J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2010;6:238-244.
121. Yiu, G, He, Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617-627.
122. Rhodes, JS, van Praag, H, Jeffrey, S, et al. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci. 2003;117:1006-1016.
123. Luo, CX, Jiang, J, Zhou, QG, et al. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke. J Neurosci Res. 2007;85:1637-1646.
124. Mizutani, K, Sonoda, S, Yamada, K, et al. Alteration of protein expression profile following voluntary exercise in the perilesional cortex of rats with focal cerebral infarction. Brain Res. 2011;1416:61-68.
125. Shih, PC, Yang, YR, Wang, RY. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One. 2013;8:e78163.
126. Schneider, A, Rogalewski, A, Wafzig, O, et al. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. Exp Transl Stroke Med. 2014;6:3.
127. Chang, HC, Yang, YR, Wang, SG, Wang, RY. Effects of treadmill training on motor performance and extracellular glutamate level in striatum in rats with or without transient middle cerebral artery occlusion. Behav Brain Res. 2009;205:450-455.
128. Mizutani, K, Sonoda, S, Wakita, H, Katoh, Y, Shimpo, K. Functional recovery and alterations in the expression and localization of protein kinase C following voluntary exercise in rat with cerebral infarction. Neurol Sci. 2014;35:53-59.
129. Mizutani, K, Sonoda, S, Hayashi, N, et al. Analysis of protein expression profile in the cerebellum of cerebral infarction rats after treadmill training. Am J Phys Med Rehabil. 2010;89:107-114.
130. Zheng, HQ, Zhang, LY, Luo, J, et al. Physical exercise promotes recovery of neurological function after ischemic stroke in rats. Int J Mol Sci. 2014;15:10974-10988.
131. Gould, E, Beylin, A, Tanapat, P, et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260-265.
132. Komitova, M, Zhao, LR, Gido, G, et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci. 2005;21:2397-2405.
133. Yagita, Y, Kitagawa, K, Sasaki, T, et al. Postischemic exercise decreases neurogenesis in the adult rat dentate gyrus. Neurosci Lett. 2006;409:24-29.
134. Lee, SH, Kim, YH, Kim, YJ, Yoon, BW. Enforced physical training promotes neurogenesis in the subgranular zone after focal cerebral ischemia. J Neurol Sci. 2008;269:54-61.
135. Tang, Q, Yang, Q, Hu, Z, et al. The effects of willed movement therapy on AMPA receptor properties for adult rat following focal cerebral ischemia. Behav Brain Res. 2007;181:254-261.
136. Tang, Q, Tan, L, Yang, X, et al. Willed-movement training reduces motor deficits and induces a PICK1-dependent LTD in rats subjected to focal cerebral ischemia. Behav Brain Res. 2013;256:481-487.
137. Cheng, A, Hou, Y, Mattson, MP. Mitochondria and neuroplasticity. ASN Neuro. 2010;2:e00045.
138. Garesse, R, Vallejo, CG. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene. 2001;263:1-16.
139. Onyango, IG, Lu, J, Rodova, M, et al. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta. 2010;1802:228-234.
140. Valerio, A, Bertolotti, P, Delbarba, A, et al. Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem. 2011;116:1148-1159.
141. Steiner, JL, Murphy, EA, Mcclellan, JL, et al. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol. 1985;2011;111:1066-1071.
142. Yin, W, Signore, AP, Iwai, M, et al. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke. 2008;39:3057-3063.
143. Bayod, S, Del, VJ, Canudas, AM, et al. Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol. 1985;2011;111:1380-1390.
144. Zhang, Q, Wu, Y, Sha, H, et al. Early exercise affects mitochondrial transcription factors expression after cerebral ischemia in rats. Int J Mol Sci. 2012;13:1670-1679.
145. Zhang, Q, Wu, Y, Zhang, P, et al. Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience. 2012;205:10-17.
146. Wang, J, Feng, X, Du, Y, Wang, L, Zhang, S. Combination treatment with progesterone and rehabilitation training further promotes behavioral recovery after acute ischemic stroke in mice. Restor Neurol Neurosci. 2013;31:487-499.
147. Gherardini, L, Gennaro, M, Pizzorusso, T. Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb Cortex. 2015;25:202-212.
148. Li, L, Rong, W, Ke, Z, Hu, X, Tong, KY. The effects of training intensities on motor recovery and gait symmetry in a rat model of ischemia. Brain Inj. 2013;27:408-416.
149. Austin, MW, Ploughman, M, Glynn, L, Corbett, D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res. 2014;87:8-15.


Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies

  • Pengyue Zhang (a1) (a2), Jia Xianglei (a1), Yang Hongbo (a1), Jichuan Zhang (a1) and Ce Xu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed