Skip to main content Accessibility help
×
Home

Mechanisms Underlying Taurine Protection Against Glutamate-Induced Neurotoxicity

  • Hai-Bo Ye (a1), Hai-Bo Shi (a1) and Shan-Kai Yin (a1)

Abstract:

Taurine appears to exert potent protections against glutamate (Glu)-induced injury to neurons, but the underlying molecular mechanisms are not fully understood. The possibly protected targets consist of the plasma membrane and the mitochondrial as well as endoplasmic reticulum (ER) membranes. Protection may be provided through a variety of effects, including the prevention of membrane depolarization, neuronal excitotoxicity and mitochondrial energy failure, increases in intracellular free calcium ([Ca2+]i), activation of calpain, and reduction of Bcl-2 levels. These activities are likely to be linked spatially and temporally in the neuroprotective functions of taurine. In addition, events that occur downstream of Glu stimulation, including altered enzymatic activities, apoptotic pathways, and necrosis triggered by the increased [Ca2+]i, can be inhibited by taurine. This review discusses the possible molecular mechanisms of taurine against Glu-induced neuronal injury, providing a better understanding of the protective processes, which might be helpful in the development of novel interventional strategies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mechanisms Underlying Taurine Protection Against Glutamate-Induced Neurotoxicity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mechanisms Underlying Taurine Protection Against Glutamate-Induced Neurotoxicity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mechanisms Underlying Taurine Protection Against Glutamate-Induced Neurotoxicity
      Available formats
      ×

Copyright

Corresponding author

Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 yishan Road, Shanghai 200233, China. email: haibo99@hotmail.com

References

Hide All
1.Oja, SS, Saransaari, P.Pharmacology of taurine. Proc West Pharmacol Soc. 2007;50:815.
2.Sturman, JA.Taurine in development. Physiol Rev. 1993;73(1):119–47.
3.Young, TL, Cepko, CL.A role for ligand-gated ion channels in rod photoreceptor development. Neuron. 2004;41(6):867–79.
4.Hayes, KC, Carey, RE, Schmidt, SY.Retinal degeneration associated with taurine deficiency in the cat. Science. 1975;188(4191):949–51.
5.Conte Camerino, D, Tricarico, D, Pierno, S, et al.Taurine and skeletal muscle disorders. Neurochem Res. 2004;29(1):135–42.
6.Schaffer, SW, Czarnecki, CM, Cawthray, M, Chovan, JP.Cardiac taurine levels and sarcolemmal calcium binding activity in furazolidone-induced cardiomyopathy. Comp Biochem Physiol C. 1981;69C(1):149–51.
7.Pion, PD, Kittleson, MD, Rogers, QR, Morris, JG.Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science. 1987;237(4816):7648.
8.Ito, T, Kimura, Y, Uozumi, Y, et al.Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol. 2008;44(5):927–37.
9.Wu, JY.Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc Natl Acad Sci USA. 1982;79(14):42704.
10.Lin, CT, Song, GX, Wu, JY.Is taurine a neurotransmitter in rabbit retina? Brain Res. 1985;337(2):2938.
11.Taber, KH, Lin, CT, Liu, JW, Thalmann, RH, Wu, JY.Taurine in hippocampus: localization and postsynaptic action. Brain Res. 1986;386(1-2):113–21.
12.Okamoto, K, Kimura, H, Sakai, Y.Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res. 1983;259(2):319–23.
13.Song, NY, Shi, HB, Li, CY, Yin, SK.Interaction between taurine and GABA(A)/glycine receptors in neurons of the rat anteroventral cochlear nucleus. Brain Res. 2012;1472:110.
14.Wu, JY, Tang, XW, Tsai, WH.Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol. 1992;315:2638.
15.Chesney, RW, Zelikovic, I, Jones, DP, Budreau, A, Jolly, K.The renal transport of taurine and the regulation of renal sodium-chloridedependent transporter activity. Pediatr Nephrol. 1990;4(4):399407.
16.Li, JH, Ling, YQ, Fan, JJ, Zhang, XP, Cui, S.Expression of cysteine sulfinate decarboxylase (CSD) in male reproductive organs of mice. Histochem Cell Biol. 2006;125(6):607–13.
17.Huxtable, RJ.Physiological actions of taurine. Physiol Rev. 1992;72(1):101–63.
18.Bouckenooghe, T, Remacle, C, Reusens, B.Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care. 2006;9(6):728–33.
19.Moran, J, Salazar, P, Pasantes-Morales, H.Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments. Exp Eye Res. 1987;45(6):769–76.
20.El Idrissi, A.Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids. 2008;34(2):3218.
21.Wu, JY, Prentice, H.Role of taurine in the central nervous system. J Biomed Sci. 2010;17 Suppl 1:S1.
22.Saransaari, P, Oja, SS.Release of GABA and taurine from brain slices. Prog Neurobiol. 1992;38(5):455–82.
23.Mutani, R, Monaco, F, Durelli, L, Delsedime, M.Levels of free amino acids in serum and cerebrospinal fluid after administration of taurine to epileptic and normal subjects. Epilepsia. 1975;16(5):7659.
24.Schaffer, S, Takahashi, K, Azuma, J.Role of osmoregulation in the actions of taurine. Amino Acids. 2000;19(3-4):527–46.
25.Wade, JV, Olson, JP, Samson, FE, Nelson, SR, Pazdernik, TL.A possible role for taurine in osmoregulation within the brain. J Neurochem. 1988;51(3):7405.
26.Tang, XW, Deupree, DL, Sun, Y, Wu, JY.Biphasic effect of taurine on excitatory amino acid-induced neurotoxicity. Adv Exp Med Biol. 1996;403:499505.
27.Azuma, J, Takihara, K, Awata, N, et al.Taurine and failing heart: experimental and clinical aspects. Prog Clin Biol Res. 1985;179:195213.
28.Smith, LJ, Lacaille, F, Lepage, G, Ronco, N, Lamarre, A, Roy, CC.Taurine decreases fecal fatty acid and sterol excretion in cystic fibrosis. A randomized double-blind trial. Am J Dis Child. 1991;145(12):14014.
29.Matsuyama, Y, Morita, T, Higuchi, M, Tsujii, T.The effect of taurine administration on patients with acute hepatitis. Prog Clin Biol Res. 1983;125:4618.
30.Airaksinen, EM, Oja, SS, Marnela, KM, Leino, E, Paakkonen, L.Effects of taurine treatment on epileptic patients. Prog Clin biol Res. 1980;39:157–66.
31.Csernansky, JG, Bardgett, ME, Sheline, YI, Morris, JC, Olney, JW.CSF excitatory amino acids and severity of illness in Alzheimer's disease. Neurology. 1996;46(6):171520.
32.Fonnum, F.Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984;42(1):111.
33.Hirai, K, Yoshioka, H, Kihara, M, et al.Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. Brain Res Dev Brain Res. 1999;114(1):63–7.
34.Ikonomidou, C, Bosch, F, Miksa, M, et al.Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–4.
35.Behar, TN, Scott, CA, Greene, CL, et al.Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci. 1999;19(11):444961.
36.Wu, G, Malinow, R, Cline, HT.Maturation of a central glutamatergic synapse. Science. 1996;274(5289):9726.
37.Gurevich, VS.[Taurine and the function of excitable tissues]. Fiziol Zh SSSR Im I M Sechenova. 1984;70(7):104656.
38.Bonfoco, E, Krainc, D, Ankarcrona, M, Nicotera, P, Lipton, SA.Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA. 1995;92(16):71626.
39.Lau, A, Tymianski, M.Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.
40.Saransaari, P, Oja, SS.Taurine and neural cell damage. Amino Acids. 2000;19(3-4):509–26.
41.Wu, JY, Wu, H, Jin, Y, et al.Mechanism of neuroprotective function of taurine. Adv Exp Med Biol. 2009;643:169–79.
42.Mankovskaya, IN, Serebrovskaya, TV, Swanson, RJ, Vavilova, GL, Kharlamova, ON.Mechanisms of taurine antihypoxic and antioxidant action. High Alt Med Biol. 2000;1(2):105–10.
43.Jong, CJ, Azuma, J, Schaffer, S.Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42(6):222332.
44.El Idrissi, A, Trenkner, E.Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci. 1999;19(21):945968.
45.Kocak-Toker, N, Giris, M, Tulubas, F, Uysal, M, Aykac-Toker, G.Peroxynitrite induced decrease in Na+, K+-ATPase activity is restored by taurine. World J Gastroenterol. 2005;11(23):35547.
46.Magalov, Shl, Arzumanova, KG.[Familial Friedreich's ataxia (review of foreign literature)]. Zh Nevropatol Psikhiatr Im S S Korsakova. 1989;89(3):136–41.
47.Trenkner, E, Liu, D, Harris, C, Sturman, J.Regulation of protein kinase C activity by taurine and beta-alanine during excitotoxicity in cat and mouse cerebellar cultures. Adv Exp Med Biol. 1994;359:309–16.
48.Yu, X, Xu, Z, Mi, M, et al.Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. Neurochem Res. 2008;33(3):5007.
49.Wu, H, Jin, Y, Wei, J, Jin, H, Sha, D, Wu, JY.mode of action of taurine as a neuroprotector. Brain Res. 2005;1038(2):123–31.
50.Bianchi, L, Colivicchi, MA, Ballini, C, et al.Taurine, taurine analogues, and taurine functions: overview. Adv Exp Med Biol. 2006;583:4438.
51.Foos, TM, Wu, JY.The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res. 2002;27(1-2):21–6.
52.Brustovetsky, N, Dubinsky, JM.Dual responses of CNS mitochondria to elevated calcium. J Neurosci. 2000;20(1):103–13.
53.Khodorov, B.Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog Biophys Mol Biol. 2004;86(2):279351.
54.Takatani, T, Takahashi, K, Uozumi, Y, et al.Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol. 2004;287(4):C94953.
55.Sun, M, Xu, C.Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cell Mol Neurobiol. 2008;28(4):593611.
56.Tenneti, L, Lipton, SA.Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem. 2000;74(1):134–42.
57.Bachis, A, Colangelo, AM, Vicini, S, et al.Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci. 2001;21(9):310412.
58.Schinder, AF, Olson, EC, Spitzer, NC, Montal, M.Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci. 1996;16(19):612533.
59.White, RJ, Reynolds, IJ.mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci. 1996;16(18):568897.
60.Green, D, Kroemer, G.The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 1998;8(7):267–71.
61.Gil-Parrado, S, Fernandez-Montalvan, A, Assfalg-Machleidt, I, et al.Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem. 2002;277(30):2721726.
62.Gross, A, McDonnell, JM, Korsmeyer, SJ.BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.
63.Choi, DW, Rothman, SM.The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.
64.El Idrissi, A, Trenkner, E.Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res. 2004;29(1):189–97.
65.Takatani, T, Takahashi, K, Uozumi, Y, et al.Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun. 2004;316(2):4849.
66.Wang, GH, Jiang, ZL, Fan, XJ, Zhang, L, Li, X, Ke, KF.Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology. 2007;52(5):1199–209.
67.Taranukhin, AG, Taranukhina, EY, Saransaari, P, Djatchkova, IM, Pelto-Huikko, M, Oja, SS.Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids. 2008;34(1):169–74.
68.Sun, M, Gu, Y, Zhao, Y, Xu, C.Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids. 2011;40(5):141929.
69.Anelli, T, Sitia, R.Protein quality control in the early secretory pathway. EMBO J. 2008;27(2):315–27.
70.Ma, Y, Hendershot, LM.ER chaperone functions during normal and stress conditions. J Chem Neuroanat. 2004;28(1-2):5165.
71.Pizzo, P, Pozzan, T.Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 2007;17(10):5117.
72.Azfer, A, Niu, J, Rogers, LM, Adamski, FM, Kolattukudy, PE.Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol. 2006;291(3):H141120.
73.DeGracia, DJ, Montie, HL.Cerebral ischemia and the unfolded protein response. J Neurochem. 2004;91(1):18.
74.Nicholls, D, Attwell, D.The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11(11):4628.
75.Pan, C, Prentice, H, Price, AL, Wu, JY.Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acids. 2012;43(2):845–55.
76.Pan, C, Gupta, A, Prentice, H, Wu, JY.Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons. J Biomed Sci. 2010;17 Suppl 1:S18.
77.Jatzke, C, Watanabe, J, Wollmuth, LP.Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol. 2002 Jan 1;538(Pt 1):2539.
78.Lazarewicz, JW, Noremberg, K, Lehmann, A, Hamberger, A.Effects of taurine on calcium binding and accumulation in rabbit hippocampal and cortical synaptosomes. Neurochem Int. 1985;7(3):4217.
79.Lombardini, JB.Effects of taurine on calcium ion uptake and protein phosphorylation in rat retinal membrane preparations. J Neurochem. 1985;45(1):268–75.
80.Takahashi, K, Azuma, J, Awata, N, et al.Protective effect of taurine on the irregular beating pattern of cultured myocardial cells induced by high and low extracellular calcium ion. J Mol Cell Cardiol. 1988;20(5):397403.
81.Liu, HY, Chi, FL, Gao, WY.Taurine modulates calcium influx under normal and ototoxic conditions in isolated cochlear spiral ganglion neurons. Pharmacol Rep. 2008;60(4):508–13.
82.Liu, HY, Gao, WY, Wen, W, Zhang, YM.Taurine modulates calcium influx through L-type voltage-gated calcium channels in isolated cochlear outer hair cells in guinea pigs. Neurosci Lett. 2006;399 (1-2):23–6.
83.Chen, WQ, Jin, H, Nguyen, M, et al.Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res. 2001;66(4):6129.
84.Takuma, K, Matsuda, T, Hashimoto, H, Asano, S, Baba, A.Cultured rat astrocytes possess Na(+)-Ca2+ exchanger. Glia. 1994;12(4):336–42.
85.Schaffer, S, Azuma, J, Takahashi, K, Mozaffari, M.Why is taurine cytoprotective? Adv Exp Med Biol. 2003;526:307–21.
86.Leon, R, Wu, H, Jin, Y, et al.Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res. 2009;87(5):118594.
87.Oja, SS, Saransaari, P.Modulation of taurine release by glutamate receptors and nitric oxide. Prog Neurobiol. 2000;62(4):407–25.
88.Saransaari, P, Oja, SS.Mechanisms of inhibitory amino acid release in the brain stem under normal and ischemic conditions. Neurochem Res. 2010;35(12):194856.
89.Duan, Y, Gross, RA, Sheu, SS.Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity. J Physiol. 2007;585(Pt 3):741–58.
90.Araujo, IM, Verdasca, MJ, Leal, EC, et al.Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. J Neurochem. 2004;91(6):132231.
91.Del Olmo, N, Bustamante, J, del Rio, RM, Solis, JM.Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res. 2000;864(2):298307.
92.Ricci, L, Valoti, M, Sgaragli, G, Frosini, M.Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. Eur J Pharmacol. 2009;621(1-3):2632.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed