Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:17:15.666Z Has data issue: false hasContentIssue false

Is Mild Cognitive Impairment a Valid Target of Therapy

Published online by Cambridge University Press:  02 December 2014

Kenneth Rockwood*
Affiliation:
The Department of Medicine (Geriatric Medicine & Neurology), Dalhousie University, Halifax, NS
Howard Chertkow
Affiliation:
Department of Medicine (Neurology), McGill University, Montreal, QC
Howard H. Feldman
Affiliation:
Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
*
Centre for Health Care of the Elderly, 1421-5955 Veterans' Memorial Lane, Halifax, Nova Scotia, B3H 2E1, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The status of Mild Cognitive Impairment (MCI) as a valid construct is controversial. The term encompasses people with heterogeneous clinical profiles, and invites sub-classifications that still require validation. Still, much evidence suggests that, properly selected, many people with MCI - especially Amnestic MCI - are at a high risk of dementia. This paper considers the validity of the construct of MCI as a high-risk state for progression and a target for treatment. We conclude that the status of MCI as an entity remains controversial. On the one hand, it can be argued that the careful section of cases at high risk of developing dementia means that it is a valid target, with the goal being the prevention of dementia. Advocates of this view see a linear progression that they are trying to arrest, but studies have yet to show that this can be done. On the other hand, it can be argued that the patients who progressed did not develop dementia: they actually had a very early form of it. By this view, people without the progressive form will be needlessly exposed to antidementia drugs, and the others should be treated anyway. Why some people progress and others do not is not clear, but the variable rates of progression - between clinic-based and population-based samples and between very similar clinical trials with slightly different inclusion criteria - suggests that MCI is a heterogeneous entity. The phenomenon of slowing or non-progression itself should be investigated, and such investigations likely should extend to people now classified as having mild dementia.

Résumé:

RÉSUMÉ:

Le statut du déficit cognitif léger (DCL) en tant que concept valide est controversé. Le terme désigne des individus qui ont des profils cliniques hétérogènes et il ouvre la voie à des sous-classifications qui n'ont pas été validées. Cependant il existe beaucoup de données indiquant que, s'ils sont choisis adéquatement, plusieurs individus ayant un DCL, spécialement le DCL amnésique, sont à haut risque de démence. Cet article examine la validité du concept du DCL comme un état à haut risque de progression et une cible de traitement. Nous concluons que le statut du DCL comme entité demeure controversé. D'une part, on peut considérer qu'une sélection précise des cas à haut risque de développer une démence indique qu'il s'agit d'une cible valide, le but étant la prévention de la démence. Ceux qui défendent cette position considèrent qu'il s'agit d'une progression linéaire qu'ils veulent tenter d'arrêter. Cependant les études n'ont pas démontré qu'il est possible de le faire jusqu'à maintenant. D'autre part, on peut considérer que les patients qui ont progressé n'ont pas développé une démence : ils avaient en fait une forme très précoce de démence. Si on adopte ce point de vue, les individus qui n'ont pas la forme progressive seront exposés inutilement aux médicaments anti-démence et les autres devraient être traités de toute façon. On ne sait pas pourquoi le déficit cognitif progresse chez certains individus et pas chez d'autres, mais le taux variable de progression - entre des échantillons recrutés en clinique et des échantillons recrutés dans la population, et entre des essais cliniques très similaires ayant des critères d'inclusion légèrement différents - suggère que le DCL est une entité hétérogène. Le phénomène de la progression lente ou de l'absence de progression devrait faire l'objet d'études et ces études devraient inclure des individus qu'on classifie actuellement comme ayant une démence légère.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Winblad, B, Palmer, K, Kivipelto, M, Jelic, V, Fratiglioni, L, Wahlund, LO, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004; 256:2406.Google Scholar
2. Grundman, M, Petersen, RC, Ferris, SH, Thomas, RG, Aisen, PS, Bennett, DA, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004;61:5966.Google Scholar
3. Ingles, JL, Fisk, JD, Merry, HR, Rockwood, K. Five-year outcomes for dementia defined solely by neuropsychological test performance. Neuroepidemiology. 2003;22:1728.Google Scholar
4. MacKnight, C, Graham, J, Rockwood, K. Factors associated with inconsistent diagnosis of dementia between physicians and neuropsychologists. J Am Geriatr Soc. 1999;47:12949.Google Scholar
5. Davis, H, Rockwood, K. Conceptualization of mild cognitive impairment: a review. Int J Geriatr Psychiatry. 2004;19: 3139.CrossRefGoogle ScholarPubMed
6. Panza, F, D’Introno, A, Colacicco, AM, Capurso, C, Del Parigi, A, Caselli, RJ, et al. Current epidemiology of mild cognitive impairment and other predementia syndromes. Am J Geriatr Psychiatry. 2005;13:63344.Google Scholar
7. Morris, JC, Storandt, M, Miller, JP, McKeel, DW, Price, JL, Rubin, EH, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58:397405.CrossRefGoogle ScholarPubMed
8. Streiner, D, Norman, G. Health Measurement Scales: a guide to their development and use. 3rd ed. Oxford: Oxford University Press; 2003.Google Scholar
9. Goldman, WP, Price, JL, Storandt, M, Grant, EA, McKeel, DW Jr, Rubin, EH, et al. Absence of cognitive impairment or decline in preclinical Alzheimer’s disease. Neurology. 2001;56:3617.Google Scholar
10. Petersen, RC, Doody, R, Kurz, A, Mohs, RC, Morris, JC, Rabins, PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:198592.Google Scholar
11. de Mendonca, A, Ribeiro, F, Guerreiro, M, Garcia, C. Frontotemporal mild cognitive impairment. J Alzheimers Dis. 2004;6:19.Google Scholar
12. Ganguli, M, Dodge, HH, Shen, C, DeKosky, ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology. 2004;63:11521.Google Scholar
13. Fisk, J, Merry, H, Rockwood, K. Variations in case definition affect prevalence but not outcomes of mild cognitive impairment. Neurology. 2003;61:117984.Google Scholar
14. Busse, A, Bischkopf, J, Riedel-Heller, SG, Angermeyer, MC. Subclassifications for mild cognitive impairment: prevalence and predictive validity. Psychol Med. 2003;33:102938.Google Scholar
15. Lopez, OL, Jagust, WJ, DeKosky, ST, Becker, JT, Fitzpatrick, A, Dulberg, C, et al. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol. 2003;60:13859.CrossRefGoogle ScholarPubMed
16. Wahlund, LO, Pihlstrand, E, Jonhagen, ME. Mild cognitive impairment: experience from a memory clinic. Acta Neurol Scand Suppl. 2003;179:214.CrossRefGoogle ScholarPubMed
17. Graham, JE, Rockwood, K, Beattie, BL, Eastwood, R, Gauthier, S, Tuokko, H, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet. 1997;349:17936.CrossRefGoogle Scholar
18. Tuokko, H, Frerichs, R, Graham, J, Rockwood, K, Kristjansson, B, Fisk, J, et al. Five-year follow-up of cognitive impairment with no dementia. Arch Neurol. 2003:60:57782.CrossRefGoogle ScholarPubMed
19. Dwolatzky, T, Whitehead, V, Doniger, GM, Simon, ES, Schweiger, A, Jaffe, D, et al. Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr. 2003;3:4.CrossRefGoogle ScholarPubMed
20. Peng, S, Wuu, J, Mufson, EJ, Fahnestock, M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol. 2004;63:6419.CrossRefGoogle ScholarPubMed
21. de Leon, MJ, DeSanti, S, Zinkowski, R, Mehta, PD, Pratico, D, Segal, S, et al. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J Intern Med. 2004;256:20523.Google Scholar
22. Kabani, NJ, Sled, JG, Chertkow, H. Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage. 2002;15:60410.CrossRefGoogle ScholarPubMed
23. Mandzia, J, Black, S, Grady, C, McAndrews, MP, Graham, S. Encoding and retrieval in aging and memory loss, a fMRI study. Brain Cogn. 2002;49:2258.Google ScholarPubMed
24. Smith, GE, Bohac, DL, Waring, SC, Kokmen, E, Tangalos, EG, Ivnik, RJ, et al. Apolipoprotein E genotype influences cognitive ‘phenotype’ in patients with Alzheimer’s disease but not in healthy control subjects. Neurology. 1998;50:35562.CrossRefGoogle ScholarPubMed
25. Artero, S, Tierney, MC, Touchon, J, Ritchie, K. Prediction of transition from cognitive impairment to senile dementia: a prospective, longitudinal study. Acta Psychiatr Scand. 2003;107:3903.Google Scholar
26. Royall, DR, Chiodo, LK, Polk, MJ. Misclassification is likely in the assessment of mild cognitive impairment. Neuroepidemiology. 2004;23:18591.CrossRefGoogle ScholarPubMed
27. Jack, CR Jr., Shiung, MM, Gunter, JL, O’Brien, PC, Weigand, SD, Knopman, DS, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004 24;62:591600.Google Scholar
28. DeCarli, C, Mungas, D, Harvey, D, Reed, B, Weiner, M, Chui, H, et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology. 2004 Jul 27;63: 2207.CrossRefGoogle Scholar
29. Bruscoli, M, Lovestone, S. Is MCI really just early dementia? A systematic review of conversion studies. Int Psychogeriatr. 2004;16:12940.Google Scholar
30. Petersen, RC. Challenges of epidemiological studies of mild cognitive impairment. Alzheimer Dis Assoc Disord. 2004;18:12.CrossRefGoogle ScholarPubMed
31. Hampel, H, Teipel, SJ, Fuchsberger, T, Andreasen, N, Wiltfang, J, Otto, M, et al. Value of CSF beta-amyloid1-42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol Psychiatry. 2004;9:70510.Google Scholar
32. Riemenschneider, M, Lautenschlager, N, Wagenpfeil, S, Diehl, J, Drzezga, A, Kurz, A. Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol. 2002;59:172934.CrossRefGoogle ScholarPubMed
33. Salloway, S, Ferris, S, Kluger, A, Goldman, R, Griesing, T, Kumar, D, et al. Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial. Neurology. 2004;63:6517.CrossRefGoogle ScholarPubMed
34. Petersen, RC, Thomas, RG, Grundman, M, Bennett, D, Doody, R, Ferris, S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005; 352:237988.Google Scholar
35. Johnson and Johnson Pharmaceutical Research and Development. Synopsis. GAL-INT-11. http://www.clinicalstudyresults.org./documents/company~study961.pdfGoogle Scholar
36. Johnson and Johnson Pharmaceutical Research and Development. Synopsis. GAL-INT-11. Available from: http://www.clinicalstudyresults.org./documents/company~study962.pdfGoogle Scholar
37. Schneider, L. Mild cognitive impairment. Am J Geriatr Psychiatry. 2005;13:62932.Google Scholar
38. Morris, JC, Cummings, J. Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis. 2005;7:2359 Google Scholar
39. Knopman, DS, Parisi, JE, Salviati, A, Floriach-Robert, M, Boeve, BF, Ivnik, RJ, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol. 2003;62:108795.Google Scholar
40. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Aging Study (MRC CFAS). Lancet. 2001;357:16975.Google Scholar
41. Wang, DS, Bennett, DA, Mufson, E, Cochran, E, Dickson, DW. Decreases in soluble alpha-synuclein in frontal cortex correlate with cognitive decline in the elderly. Neurosci Lett. 2004;359:1048.Google Scholar
42. Mufson, EJ, Ma, SY, Dills, J, Cochran, EJ, Leurgans, S, Wuu, J, et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol. 2002;443:13653.Google Scholar
43. Mufson, EJ, Chen, EY, Cochran, EJ, Beckett, LA, Bennett, DA, Kordower, JH. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol. 1999;158:46990.Google Scholar
44. DeKosky, ST, Ikonomovic, MD, Styren, SD, Beckett, L, Wisniewski, S, Bennett, DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51:14555.CrossRefGoogle ScholarPubMed
45. Grady, CL, McIntosh, AR, Beig, S, Keightley, ML, Burian, H, Black, SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23:98693.Google Scholar
46. Counts, SE, Nadeem, M, Wuu, J, Ginsberg, SD, Saragovi, HU, Mufson, EJ. Reduction of cortical TrkA but not p75(NTR) protein in earlystage Alzheimer’s disease. Ann Neurol. 2004;56:52031.Google Scholar
47. Fisk, JD, Rockwood, K. Outcomes of incident mild cognitive impairment in relation to case definition. J Neurol Neurosurg Psychiatry. 2005;76:11757.Google Scholar
48. Kumar, R, Dear, KB, Christensen, H, Ilschner, S, Jorm, AF, Meslin, C, et al. Prevalence of mild cognitive impairment in 60- to 64-yearold community-dwelling individuals: The personality and total health through life 60+ study. Dement Geriatr Cogn Disord. 2005;19:6774.Google Scholar
49. Ikonomovic, MD, Mufson, EJ, Wuu, J, Cochran, EJ, Bennett, DA, DeKosky, ST. Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer’s neuropathology. J Alzheimers Dis. 2003;5:3948.Google Scholar
50. Gilmor, ML, Erickson, JD, Varoqui, H, Hersh, LB, Bennett, DA, Cochran, EJ, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411:693704.Google Scholar
51. Panza, F, D’Introno, A, Colacicco, AM, Capurso, C, Parigi, AD, Capurso, SA, et al. Cognitive frailty: predementia syndrome and vascular risk factors. Neurobiol Aging. 2006;27:93340.CrossRefGoogle ScholarPubMed
52. Thal, LJ, Ferris, SH, Kirby, L, Block, GA, Lines, CR, Yuen, E, et al. A randomized, double-blind study of Rofecoxib in patients with mild cognitive impairment. Neuropsycho-pharmacology. 2005;3:112.Google Scholar
53. Morris, JC. Mild cognitive impairment is early-stage Alzheimer disease: time to revise diagnostic criteria. Arch Neurol. 2006;63:156.Google Scholar
54. Lyketsos, CG, Lopez, O, Jones, B, Fitzpatrick, AL, Breitner, J, DeKosky, S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288:147583.Google Scholar
55. Feldman, H, Scheltens, P, Scarpini, E, Hermann, N, Mesenbrink, P, Mancione, L, et al. Behavioral symptoms in mild cognitive impairment. Neurology. 2004;62:1199201.Google Scholar
56. Ritchie, K, Touchon, J. Mild cognitive impairment: conceptual basis and current nosological status. Lancet. 2000;355:2258.Google Scholar
57. Steffens, DC, Otey, E, Alexopoulos, GS, Butters, MA, Cuthbert, B, Ganguli, M, et al. Perspectives on depression, mild cognitive impairment, and cognitive decline. Arch Gen Psychiatry 2006;63:130.Google Scholar
58. Rasquin, SM, Lodder, J, Visser, PJ, Lousberg, R, Verhey, FR. Predictive accuracy of MCI subtypes for Alzheimer’s disease and vascular dementia in subjects with mild cognitive impairment: a 2 year follow up study. Dement Geriatr Cogn Disord. 2005;19:1139.Google Scholar
59. Whitehouse, PJ, Juengst, ET. Antiaging medicine and mild cognitive impairment: practice and policy issues for geriatrics. J Am Geriatr Soc. 2005;53:141722.Google Scholar
60. Petersen, RC, Smith, GE, Waring, SC, Ivnik, RJ, Tangalos, EG, Kokmen, E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:3038. Erratum in: Arch Neurol. 1999;56:760.Google Scholar
61. Bennett, HP, Corbett, AJ, Gaden, S, Grayson, DA, Kril, JJ, Broe, GA. Subcortical vascular disease and functional decline: a 6-year predictor study. J Am Geriatr Soc. 2002;50:196977.Google Scholar
62. Darby, D, Maruff, P, Collie, A, McStephen, M. Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology. 2002;59:10426.Google Scholar
63. Hanninen, T, Hallikainen, M, Tuomainen, S, Vanhanen, M, Soininen, H. Prevalence of mild cognitive impairment: a population-based study in elderly subjects. Acta Neurol Scand. 2002;106:14854.Google Scholar
64. Larrieu, S, Letenneur, L, Orgogozo, JM, Fabrigoule, C, Amieva, H, Le, CN, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002;59:15949.Google Scholar
65. Lambon, RMA, Patterson, K, Graham, N, Dawson, K, Hodges, JR. Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer’s disease: a cross-sectional and longitudinal study of 55 cases. Brain. 2003;126(Pt 11):235062.CrossRefGoogle Scholar
66. Farlow, MR, He, Y, Tekin, S, Xu, J, Lane, R, Charles, HC. Impact of APOE in mild cognitive impairment. Neurology. 2004;63: 1898901.CrossRefGoogle ScholarPubMed
67. Solfrizzi, V, Panza, F, Colacicco, AM, D’Introno, A, Capurso, C, Torres, F, et al. Italian longitudinal study on aging working group. Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology. 2004;63:188291.Google Scholar
68. De Jager, C, Blackwell, AD, Budge, MM, Sahakian, BJ. Predicting cognitive decline in healthy older adults. Am J Geriatr Psychiatry. 2005;13:73540.CrossRefGoogle ScholarPubMed
69. Devanand, DP, Pelton, GH, Zamora, D, Liu, X, Tabert, M, Goodkind, M, et al. Predictive utility of apolipoprotein E genotype for Alzheimer disease in outpatients with mild cognitive impairment. Arch Neurol. 2005;62:97580.CrossRefGoogle ScholarPubMed
70. Geslani, DM, Tierney, MC, Herrmann, N, Szalai, JP. Mild cognitive impairment: an operational definition and its conversion rate to Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;19: 3839.Google Scholar
71. Nasreddine, ZS, Phillips, NA, Bedirian, V, Charbonneau, S, Whitehead, V, Collin, I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:6959.Google Scholar
72. Purser, JL, Fillenbaum, GG, Pieper, CF, Wallace, RB. Mild cognitive impairment and 10-year trajectories of disability in the Iowa established populations for epidemiologic studies of the elderly cohort. J Am Geriatr Soc. 2005;53:196672.Google Scholar
73. Visser, PJ, Scheltens, P, Verhey, FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J Neurol Neurosurg Psychiatry. 2005;76:134854.Google Scholar
74. Verghese, J, LeValley, A, Hall, CB, Katz, MJ, Ambrose, AF, Lipton, RB. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc. 2006;54:25561.Google Scholar