Skip to main content Accessibility help
×
Home

Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury

  • Mypinder S. Sekhon (a1) (a2), Peter Gooderham (a2), Brian Toyota (a2), Navid Kherzi (a2), Vivien Hu (a3), Vinay K. Dhingra (a1), Morad S. Hameed (a1) (a4), Dean R. Chittock (a1) and Donald E. Griesdale (a1) (a5) (a6)...

Abstract

Background Traditionally, the delivery of dedicated neurocritical care (NCC) occurs in distinct NCC units and is associated with improved outcomes. Institution-specific logistical challenges pose barriers to the development of distinct NCC units; therefore, we developed a consultancy NCC service coupled with the implementation of invasive multimodal neuromonitoring, within a medical-surgical intensive care unit. Our objective was to evaluate the effect of a consultancy NCC program on neurologic outcomes in severe traumatic brain injury patients. Methods: We conducted a single-center quasi-experimental uncontrolled pre- and post-NCC study in severe traumatic brain injury patients (Glasgow Coma Scale ≤8). The NCC program includes consultation with a neurointensivist and neurosurgeon and multimodal neuromonitoring. Demographic, injury severity metrics, neurophysiologic data, and therapeutic interventions were collected. Glasgow Outcome Scale (GOS) at 6 months was the primary outcome. Multivariable ordinal logistic regression was used to model the association between NCC implementation and GOS at 6 months. Results: A total of 113 patients were identified: 76 pre-NCC and 37 post-NCC. Mean age was 39 years (standard deviation [SD], 2) and 87 of 113 (77%) patients were male. Median admission motor score was 3 (interquartile ratio, 1-4). Daily mean arterial pressure was higher (95 mmHg [SD, 10]) versus (88 mmHg [SD, 10], p<0.001) and daily mean core body temperature was lower (36.6°C [SD, 0.90]) versus (37.2°C [SD, 1.0], p=0.001) post-NCC compared with pre-NCC, respectively. Multivariable regression modelling revealed the NCC program was associated with a 2.5 increased odds (odds ratios, 2.5; 95% confidence interval, 1.1-5.3; p=0.022) of improved 6-month GOS. Conclusions: Implementation of a NCC program is associated with improved 6 month GOS in severe TBI patients.

Contexte: La prestation de soins intensifs neurologiques (SIN) spécialisés s’effectue habituellement dans diverses unités et est associée à une évolution favorable de l’état des patients. Cela dit, les difficultés logistiques propres à chaque établissement constituent autant d’obstacles à la mise sur pied d’unités de SIN. Nous avons par conséquent créé, au sein d’un service de soins intensifs formé de médecins et de chirurgiens, un service-conseil et mis en œuvre un programme de monitorage multimodal. Notre objectif était d’évaluer l’impact de ce service-conseil quant à l’évolution de patients victimes de sévères traumatismes crâniens. Méthodes: Nous avons mené, dans un seul centre hospitalier, une étude quasi expérimentale non-contrôlée divisant ces patients (score à l’échelle de Glasgow ≤ 8) en deux groupes : les patients n’ayant pas reçu de SIN et ceux en ayant bénéficié. Le programme incluait une série de consultations avec des médecins spécialisés en SIN (neurointensivists) et des neurochirurgiens ainsi qu’un monitorage multimodal. Diverses données (de nature démographique et neurophysiologique mais se rapportant aussi à la gravité des blessures et aux types d’interventions thérapeutiques) ont alors été collectées. Au bout de 6 mois, le score à l’échelle de Glasgow fut le principal indicateur d’évolution. La technique de régression logistique ordinale à variables multiples fut utilisée pour modéliser le lien existant entre la mise en œuvre dudit programme et les scores à l’échelle de Glasgow. Résultats: Un groupe formé de 113 patients a été retenu ; de ce nombre, 76 n’avaient bénéficié d’aucun SIN. L’âge moyen de tous les patients était de 39 ans (écart type [ÉT], 2). Notons que 87 d’entre eux (77%) étaient des hommes. Au moment de leur admission, leur score médian à l’échelle de Glasgow était de 3 (rapport interquartile, 1-4). Si l’on compare les patients ayant bénéficié de SIN à ceux n’en ayant pas reçu, on remarque que la pression artérielle moyenne des premiers était quotidiennement plus élevée (95 mmHg [ÉT, 10]) que celle des derniers (88 mmHg [ÉT, 10], p < 0,001). De plus, la température moyenne centrale des patients ayant bénéficié de SIN s’est avérée plus basse (36,6 °C [ÉT, 0,90]) que celle des autres patients (37,2°C [ÉT, 1,0], p = 0,001). À l’aide d’une régression à variables multiples, il a été démontré que le programme de SIN était associé à une probabilité 2,5 plus élevée (risque relatif approché : 2,5; IC 95%, 1,1-5,3 ; p = 0,022) d’obtenir un meilleur score à l’échelle de Glasgow. Conclusions: Au bout de 6 mois, la mise en œuvre d’un programme de SIN a été associée, chez des patients victimes de sévères traumatismes crâniens, une amélioration de leur score à l’échelle de Glasgow.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Mypinder S. Sekhon, Critical Care Medicine, Vancouver General Hospital, Room 2438, Jim Pattison Pavilion, 2nd Floor, 855 West 12th Avenue, Vancouver BC V5Z 1M9 Email: mypindersekhon@gmail.com

References

Hide All
1. Korbakis, G, Bleck, T. The evolution of neurocritical care. Crit Care Clin. 2014;30:657-671.
2. Kramer, AH, Zygun, DA. Neurocritical care: why does it make a difference? Curr Opin Crit Care. 2014;20:174-181.
3. Kramer, AH, Zygun, DA. Do neurocritical care units save lives? Measuring the impact of specialized ICUs. Neurocrit Care. 2011;14:329-333.
4. Selassie, AW, Zaloshnja, E, Langlois, JA, Miller, T, Jones, P, Steiner, C. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. J Head Trauma Rehabil. 2008;23:123-131.
5. Langlois, JA, Rutland-Brown, W, Wald, MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375-378.
6. Chen, A, Bushmeneva, K, Zagorski, B, Colantonio, A, Parsons, D, Wodchis, WP. Direct cost associated with acquired brain injury in Ontario. BMC Neurol. 2012;12:76.
7. Cooper, DJ, Rosenfeld, JV, Murray, L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493-1502.
8. Chesnut, RM, Temkin, N, Carney, N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012:2471-2481.
9. Robertson, CS, Hannay, HJ, Yamal, J-M, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury. JAMA. 2014;312:36.
10. Andrews, PJD, Sinclair, HL, Rodriguez, A, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403-2412.
11. Coronado, VG, Xu, L, Basavaraju, SV, et al. Surveillance for traumatic brain injury-related deaths—United States, 1997-2007. MMWR Surveill Summ. 2011;60:1-32.
12. Elf, K, Nilsson, P, Enblad, P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med. 2002;30:2129-2134.
13. Patel, HC, Menon, DK, Tebbs, S, Hawker, R, Hutchinson, PJ, Kirkpatrick, PJ. Specialist neurocritical care and outcome from head injury. Intens Care Med. 2002;28:547-553.
14. Wärme, PE, Bergström, R, Persson, L. Neurosurgical intensive care improves outcome after severe head injury. Acta Neurochir (Wien). 1991;110:57-64.
15. Lott, JP, Iwashyna, TJ, Christie, JD, Asch, DA, Kramer, AA, Kahn, JM. Critical illness outcomes in specialty versus general intensive care units. Am J Resp Crit Care Med. 2009;179:676-683.
16. Grieve, R, Sadique, Z, Gomes, M, et al. An evaluation of the clinical and cost-effectiveness of alternative care locations for critically ill adult patients with acute traumatic brain injury. Br J Neurosurg. 2016:1-9.
17. Vandenbroucke, JP, von Elm, E, Altman, DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology. 2007;18:805-835.
18. Maas, AIR, Hukkelhoven, CWPM, Marshall, LF, Steyerberg, EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57:1173-1182.
19. Bratton, SL, Chestnut, RM, Ghajar, J, et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24:s1-s106.
20. Aries, MJH, Czosnyka, M, Budohoski, KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456-2463.
21. Smielewski, P, Aries, M, Lavinio, A, et al. Use of ICM+ software for tracking “optimal” CPP values in real time. Eur J Anaesthesiol. 2012;29:A34.
22. Vittinghoff, E, McCulloch, CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710-718.
23. Buis, ML. Direct and indirect effects in a logit model. Stata J. 2010;10:11-29.
24. Diringer, MN, Edwards, DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med. 2001;29:635-640.
25. Lerch, C, Yonekawa, Y, Muroi, C, Bjeljac, M, Keller, E. Specialized neurocritical care, severity grade, and outcome of patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2006;5:85-92.
26. Josephson, SA, Douglas, VC, Lawton, MT, English, JD, Smith, WS, Ko, NU. Improvement in intensive care unit outcomes in patients with subarachnoid hemorrhage after initiation of neurointensivist co-management. J Neurosurg. 2010;112:626-630.
27. Samuels, O, Webb, A, Culler, S, Martin, K, Barrow, D. Impact of a dedicated neurocritical care team in treating patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;14:334-340.
28. Varelas, PN, Eastwood, D, Yun, HJ, et al. Impact of a neurointensivist on outcomes in patients with head trauma treated in a neurosciences intensive care unit. J Neurosurg. 2006;104:713-719.
29. Varelas, PN, Schultz, L, Conti, M, Spanaki, M, Genarrelli, T, Hacein-Bey, L. The impact of a neuro-intensivist on patients with stroke admitted to a neurosciences intensive care unit. Neurocrit Care. 2008;9:293-299.
30. Pineda, JA, Leonard, JR, Mazotas, IG, et al. Effect of implementation of a paediatric neurocritical care programme on outcomes after severe traumatic brain injury: a retrospective cohort study. Lancet Neurol. 2013;12:45-52.
31. Temkin, NR, Anderson, GD, Winn, HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol. 2007;6:29-38.
32. Wright, DW, Yeatts, SD, Silbergleit, R, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457-2466.
33. Le Roux, P, Menon, DK, Citerio, G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive. Int Care Med. 2014;40:1189-1209.
34. Sekhon, MS, McLean, N, Henderson, WR, Chittock, DR, Griesdale, DE. Association of hemoglobin concentration and mortality in critically ill patients with severe traumatic brain injury. Crit Care. 2012;16:R128.
35. Dings, J, Jäger, A, Meixensberger, J, Roosen, K. Brain tissue pO2 and outcome after severe head injury. Neurol Res. 1998;20(Suppl 1):S71-5.
36. Vik, A, Nag, T, Fredriksli, OA, et al. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109:678-684.
37. Spiotta, AM, Stiefel, MF, Gracias, VH, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113:571-580.
38. Diaz-Arrastia, R. Brain Tissue Oxygen Monitoring in Traumatic Brain Injury (TBI) (BOOST 2) Available at: https://clinicaltrials.gov/ct2/show/NCT00974259.
39. Aries, MJ, Czosnyka, M, Budohoski, KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456-2463.
40. Grimshaw, J, Campbell, M, Eccles, M, Steen, N. Experimental and quasi-experimental designs for evaluating guideline implementation strategies. Fam Pr. 2000;17(Suppl 1):S11-6.
41. Salas, M, Hofman, A, Stricker, BH. Confounding by indication: an example of variation in the use of epidemiologic terminology. Am J Epidemiol. 1999;149:981-983.
42. Turgeon, AF, Lauzier, F, Simard, J-F, et al. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study. CMAJ. 2011;183:1581-1588.

Keywords

Type Description Title
WORD
Supplementary materials

Sekhon supplementary material
Sekhon supplementary material 1

 Word (54 KB)
54 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed