Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:46:13.624Z Has data issue: false hasContentIssue false

Hemangioblastoma Stromal Cells Show Committed Stem Cell Phenotype

Published online by Cambridge University Press:  02 December 2014

Cassandra M. Welten
Affiliation:
Department of Pathology, London Health Sciences Centre
Emily C. Keats
Affiliation:
Department of Pathology, London Health Sciences Centre
Lee-Cyn Ang
Affiliation:
Department of Pathology, London Health Sciences Centre The University of Western Ontario, Division of Neuropathology, London Health Sciences Centre
Zia A. Khan*
Affiliation:
Department of Pathology, London Health Sciences Centre Metabolism and Diabetes Research Program, Lawson Health Research Institute, London, ON Canada
*
4011 Dental Sciences Building, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada. Email: zia.khan@schulich.uwo.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Hemangioblastomas are benign vascular tumors of the central nervous system that occur sporadically or in association with von Hippel-Lindau disease. These tumors are characteristically composed of a dense capillary network with intervening stromal/interstitial cells. To date, the histogenesis of hemangioblastoma remains unclear. We hypothesize that hemangioblastomas arise from a defective mesodermal stem cell, which gives rise to the atypical vasculature.

Methods:

To test our hypothesis, we have characterized the cellular composition of hemangioblastomas by immunophenotyping pluripotent and committed stem cells and vascular endothelial cells.

Results:

Our findings show that hemangioblastoma endothelial cells are positive for CD133, a stem and progenitor cell marker. Vascular endothelial cells also expressed nuclear Oct4. In addition to the endothelium, both CD133 and Oct4 were present in stromal and perivascular cells. Interestingly, neither the endothelium nor the stromal cells expressed Sox2 or Nanog suggesting a committed stem cell phenotype.

Conclusions:

From these findings, we believe that hemangioblastoma stromal cells are committed stem cells producing both vascular cell types. The findings also show an unusual CD133-positive endothelial phenotype in hemangioblastoma.

Résumé

RÉSUMÉContexte:

Les hémangioblastomes sont des tumeurs vasculaires bénignes du système nerveux central qui surviennent sporadiquement ou en association à la maladie de von Hippel-Lindau. Ces tumeurs sont composées d'un réseau capillaire dense intercalé de cellules stromales/interstitielles. À ce jour, l'histogenèse de l'hémangioblastome demeure obscure. Nous émettons l'hypothèse que les hémangioblastomes proviennent de cellules souches mésodermiques défectueuses qui donnent naissance à un réseau vasculaire anormal.

Méthode:

Nous avons caractérisé la composition cellulaire d'hémangioblastomes par immunophénotypage de cellules souches pluripotentes et de cellules souches commises ainsi que de cellules vasculaires endothéliales afm de vérifier notre hypothèse de travail.

Résultats:

Nos observations démontrent que les cellules endothéliales de l'hémangioblastome sont positives pour CD133, un marqueur des cellules souches et des cellules progénitrices. Les cellules endothéliales vasculaires exprimaient également l'Oct4 au niveau du noyau. En plus d'être présent dans l'endothélium, CD133 et Oct4 étaient également présents dans les cellules stromales et périvasculaires. À noter que ni l'endothélium ni les cellules stromales n'exprimaient Sox2 ou Nanog, ce qui suggère un phénotype de cellules souches commises.

Conclusions:

Ces observations nous laissent croire que les cellules stromales de l'hémangioblastome sont des cellules souches commises qui produisent les deux types de cellules vasculaires. Nous avons également observé un phénotype endothélial CD133 positif inusité dans l'hémangioblastome.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2012

References

1. Hussein, MR. Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol. 2007 Oct;88(5):31124.CrossRefGoogle ScholarPubMed
2. Glasker, S, Li, J, Xia, JB, et al. Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res. 2006 Apr 15;66(8):416772.Google Scholar
3. Aldape, KD, Plate, KH, Vortmeyer, AO, Zagzag, D, Neumann, HPH. World Health Organization: Classification of Tumours of the Central Nervous System. 4th ed: IARC; 2007. p. 1846.Google Scholar
4. Atlas, SW, Lavi, E, Fisher, PG. Intraxial brain tumours. In: Atlas, SW, editor. Magnetic resonance imaging of the brain and spine. 3rd ed: Philadelphia. Lippincott, Williams & Wilkins; 2001. p. 38994.Google Scholar
5. Lonser, RR, Glenn, GM, Walther, M, et al. von Hippel-Lindau disease. Lancet. 2003 Jun 14;361(9374):205967.Google Scholar
6. Chaudhry, AP, Montes, M, Cohn, GA. Ultrastructure of cerebellar hemangioblastoma. Cancer. 1978 Oct;42(4):183450.Google Scholar
7. Richard, S, Campello, C, Taillandier, L, Parker, F, Resche, F. Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med. 1998 Jun;243(6):54753.Google Scholar
8. Park, DM, Zhuang, Z, Chen, L, et al. von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med. 2007 Feb;4(2):e60.Google Scholar
9. Vortmeyer, AO, Frank, S, Jeong, SY, et al. Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease. Cancer Res. 2003 Nov 1;63(21):70515.Google Scholar
10. O’Brien, CA, Pollett, A, Gallinger, S, Dick, JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007 Jan 4;445(7123):10610.Google Scholar
11. Ricci-Vitiani, L, Lombardi, DG, Pilozzi, E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007 Jan 4;445(7123):1115.Google Scholar
12. Singh, SK, Clarke, ID, Terasaki, M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003 Sep 15;63 (18):58218.Google Scholar
13. Salmaggi, A, Boiardi, A, Gelati, M, et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia. 2006 Dec;54(8):85060.Google Scholar
14. Collins, AT, Berry, PA, Hyde, C, Stower, MJ, Maitland, NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005 Dec 1;65(23):1094651.Google Scholar
15. Richardson, GD, Robson, CN, Lang, SH, Neal, DE, Maitland, NJ, Collins, AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004 Jul 15;117(Pt 16):353945.Google Scholar
16. Loh, YH, Wu, Q, Chew, JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006 Apr;38(4):43140.Google Scholar
17. Kaelin, WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008 Nov;8(11):86573.Google Scholar
18. Kaelin, WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002 Sep;2(9):67382.Google Scholar
19. Pietras, A, Johnsson, AS, Pahlman, S. The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol. 2010;345:120.Google Scholar
20. Ma, D, Zhu, W, Zhang, M, et al. Identification of tumorigenic cells and implication of their aberrant differentiation in human hemangioblastomas. Cancer Biol Ther. 2011 Oct 15;12(8): 72736.CrossRefGoogle ScholarPubMed
21. Ma, D, Zhang, M, Chen, L, et al. Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis. 2011 Jan;32(1):1029.Google Scholar
22. Fox, N, Damjanov, I, Knowles, BB, Solter, D. Immunohistochemical localization of the mouse stage-specific embryonic antigen 1 in human tissues and tumors. Cancer Res. 1983 Feb;43(2):66978.Google ScholarPubMed
23. Shamblott, MJ, Axelman, J, Wang, S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):1372631.Google Scholar
24. Chan, CC, Chew, EY, Shen, D, Hackett, J, Zhuang, Z. Expression of stem cells markers in ocular hemangioblastoma associated with von Hippel-Lindau (VHL) disease. Mol Vis. 2005;11:697704.Google Scholar
25. Khan, ZA, Boscolo, E, Picard, A, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008 Jul;118(7):25929.Google Scholar
26. Hilbe, W, Dirnhofer, S, Oberwasserlechner, F, et al. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol. 2004 Sep;57(9): 9659.Google Scholar
27. Bao, S, Wu, Q, Sathornsumetee, S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006 Aug 15;66(16):78438.Google Scholar
28. Wright, MH, Calcagno, AM, Salcido, CD, Carlson, MD, Ambudkar, SV, Varticovski, L. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 2008;10(1):R10.Google Scholar
29. Wang, R, Chadalavada, K, Wilshire, J, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010 Dec 9;468 (7325):82933.Google Scholar
30. Lo Cicero, V, Montelatici, E, Cantarella, G, et al. Do mesenchymal stem cells play a role in vocal fold fat graft survival? Cell Prolif. 2008 Jun;41(3):46073.Google Scholar
31. Papayannopoulou, T, Brice, M, Broudy, VC, Zsebo, KM. Isolation of c-kit receptor-expressing cells from bone marrow, peripheral blood, and fetal liver: functional properties and composite antigenic profile. Blood. 1991 Sep 15;78(6):140312.Google Scholar
32. Mann, GE, Yudilevich, DL, Sobrevia, L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev. 2003 Jan;83(1):183252.Google Scholar
33. Mandriota, SJ, Turner, KJ, Davies, DR, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell. 2002 Jun;1(5): 45968.CrossRefGoogle ScholarPubMed
34. Wizigmann-Voos, S, Breier, G, Risau, W, Plate, KH. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995 Mar 15;55(6):135864.Google Scholar
35. Bohling, T, Hatva, E, Kujala, M, Claesson-Welsh, L, Alitalo, K, Haltia, M. Expression of growth factors and growth factor receptors in capillary hemangioblastoma. J Neuropathol Exp Neurol. 1996 May;55(5):5227.Google Scholar
36. Flamme, I, Krieg, M, Plate, KH. Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am J Pathol. 1998 Jul;153(1):259.Google Scholar
37. Li, Z, Bao, S, Wu, Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009 Jun 2;15(6):50113.Google Scholar
38. McCord, AM, Jamal, M, Shankavaram, UT, Lang, FF, Camphausen, K, Tofilon, PJ. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res. 2009 Apr;7(4):48997.Google Scholar
39. Pietras, A, Gisselsson, D, Ora, I, et al. High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol. 2008 Mar;214 (4):4828.Google Scholar
40. Pietras, A, Hansford, LM, Johnsson, AS, et al. HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci USA. 2009 Sep 29;106(39):1680510.Google Scholar