Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T21:51:12.644Z Has data issue: false hasContentIssue false

Gamma Knife in the Treatment of Pituitary Adenomas: Results of a Single Center

Published online by Cambridge University Press:  23 September 2014

F. A. Zeiler*
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
M. Bigder
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
A. Kaufmann
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
P. J. McDonald
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
D. Fewer
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
J. Butler
Affiliation:
Department of Radiation Oncology, University of Manitoba, Winnipeg, Manitoba, Canada
G. Schroeder
Affiliation:
Department of Radiation Oncology, University of Manitoba, Winnipeg, Manitoba, Canada
M. West
Affiliation:
Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
*
Section of Neurosurgery, University of Manitoba, Health Sciences Center, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada. Email: umzeiler@cc.umanitba.ca
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

Gamma Knife (GK) radiosurgery for pituitary adenomas can offer a means of tumor and biologic control with acceptable risk and low complication rates.

Methods:

Retrospective review of all the patients treated at our center with GK for pituitary adenomas from Nov 2003 to June 2011.

Results:

We treated a total of 86 patients. Ten were lost to follow-up. Mean follow was 32.8 months. There were 21 (24.4%) growth hormone secreting adenomas (GH), 8 (9.3%) prolactinomas (PRL), 8 (9.3%) adrenocorticotropic hormone secreting (ACTH) adenomas, 2 (2.3%) follicle stimulating hormone/luteinizing hormone secreting (FSH/LH) adenomas, and 47 (54.7%) null cell pituitary adenomas that were treated. Average maximum tumor diameter and volume was 2.21cm and 5.41cm3, respectively. The average dose to the 50% isodose line was 14.2 Gy and 23.6 Gy for secreting and non-secreting adenomas respectively. Mean maximal optic nerve dose was 8.87 Gy. Local control rate was 75 of 76 (98.7%), for those with followup. Thirty-three (43.4%) patients experienced arrest of tumor growth, while 42 (55.2%) patients experienced tumor regression. Of the 39 patients with secreting pituitary tumors, 6 were lost to follow-up. Improved endocrine status occurred in 16 (50.0%), while 14 (43.8%) demonstrated stability of hormone status on continued pre-operative medical management. Permanent complications included: panhypopituitarism (4), hypothyroidism (4), hypocortisolemia (1), diabetes insipidus (1), apoplexy (1), visual field defect (2), and diplopia (1).

Conclusions:

Gamma Knife radiosurgery is a safe and effective means of achieving tumor growth control and endocrine remission/stability in pituitary adenomas.

Résumé:

RÉSUMÉ:Contexte:

La radiochirurgie par scalpel gamma (SG) pour traiter des adénomes pituitaires peut offrir un contrôle de la tumeur et un contrôle biologique comportant un niveau de risque acceptable et un faible taux de complications.

Méthode:

Nous avons effectué une revue rétrospective des dossiers de tous les patients traités dans notre centre au moyen du SG pour des adénomes pituitaires de novembre 2003 à juin 2011.

Résultats:

Nous avons traité un total de 86 patients. Dix ont été perdus au suivi. Le suivi moyen était de 32,8 mois. Parmi les adénomes, 21 étaient des adénomes qui sécrétaient de l'hormone de croissance (24,4%), 8 étaient des prolactinomes (9,3%), 8 sécrétaient de l'hormone adrénocorticotrope (9,3%), 2 sécrétaient de la gonadotrophine A/gonadotrophine B (2,3%) et 47 étaient des adénomes pituitaires non-fonctionnels. Le diamètre maximal moyen et le volume moyen étaient 2,21 cm et 5,41 cm3 respectivement. La dose moyenne à la ligne isodose 50% était 14,2 Gy et 23,6 Gy pour les adénomes sécrétoires et non sécrétoires respectivement. La dose maximale moyenne délivrée au nerf optique était 8,87Gy. Le taux de contrôle local de la tumeur était de 75 sur 76 (98,7%) chez les patients pour qui le suivi était disponible. Chez 33 patients (43,4%) la tumeur a cessé de croître et chez 42 patients (55,2%) la tumeur a régressé. Parmi les 39 patients qui avaient une tumeur sécrétante, 6 ont été perdus au suivi. L'état endocrinien s'est amélioré chez 16 (50%) et il est demeuré stable chez 14 patients dont le traitement médical préchirurgical a été maintenu. Les complications permanentes ont été les suivantes: le panhypopituitarisme (4), l'hypothyroïdie (4), l'hypocortisolémie (1), le diabète insipide (1), l'apoplexie (1), un défaut du champ visuel (2) et de la diplopie (1).

Conclusions:

La radiochirurgie par scalpel gamma est un moyen sûr et efficace de contrôler la croissance de la tumeur et de parvenir à une rémission endocrinienne/à la stabilisation des adénomes pituitaires.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Witt, TC. Stereotactic radiosurgery for pituitary tumors. Neurosurg Focus. 2003;14(5):E10.CrossRefGoogle ScholarPubMed
2. Jagannathan, J, Yen, CP, Pouratian, N, Laws, ER, Sheehan, JP. Stereotactic radiosurgery for pituitary adenomas: a comprehensive review of indications, techniques and long-term results using the Gamma Knife. J Neurooncol. 2009;92:345–56.CrossRefGoogle ScholarPubMed
3. Yang, I, Kim, W, De Salles, A, Bergsneider, M. A systemic analysis of disease control in acromegaly treated with radiosurgery. Neurosug Focus. 2010;29(4):E13.CrossRefGoogle Scholar
4. Poon, TL, Leung, SML, Poon, CYF, Yu, CP. Predictors of outcome following gamma knife surgery for acromegaly. J Neurosurg. 2010;113:149–52.CrossRefGoogle ScholarPubMed
5. Stapleton, CJ, Liu, CY, Weiss, MH. The role of stereotactic radiosurgery in the multimodal management of growth hormone - secreting pituitary adenomas. Neurosurg Focus. 2010;29 (4):E11.CrossRefGoogle ScholarPubMed
6. Tanaka, S, Link, MJ, Brown, PD, Stafford, SL, Young, WF, Pollock, BE. Gamma knife radiosurgery for patients with prolactinsecreting pituitary adenomas. World Neurosurg. 2010;74(1):147–52.CrossRefGoogle ScholarPubMed
7. Jezkova, J, Hana, V, Krsek, M, et al. Use of the leksell gamma knife in the treatment of prolactinoma patients. Clin Endocrinol. 2009;70:732–41.CrossRefGoogle ScholarPubMed
8. Gopalan, R, Schlesinger, D, Vance, ML, Laws, E, Sheehan, J. Longterm outcomes after gamma knife radiosurgery for patients with a non-functioning pituitary adenoma. Neurosurgery. 2011;69(2):284–93.CrossRefGoogle Scholar
9. Pollock, BE, Brown, PD, Nippoldt, TB, Young, WF. Pituitary tumor type affects the chance of biochemical remission after radiosurgery of hormone-secreting pituitary adenomas. Neurosurgery. 2008;62(6):1271–8.CrossRefGoogle ScholarPubMed
10. Pollock, BE, Nippoldt, TB, Stafford, SL, Foote, RL, Abboud, CF. Results of stereotactic radiosurgery in patients with hormoneproducing adenomas: factors associated with endocrine normalization. J Neurosurg. 2002;97:525–30.CrossRefGoogle ScholarPubMed
11. Sheehan, JP, Pouratian, N, Steiner, L, Laws, ER, Vance, ML. Gamma knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg. 2011;114:303–9.CrossRefGoogle ScholarPubMed
12. Feigl, GC, Bonelli, CM, Berghold, A, Mokry, M. Effects of gamma knife radiosurgery of pituitary adenomas on pituitary function. J Neurosurg. 2002;97(suppl 5):415–21.CrossRefGoogle ScholarPubMed
13. Marek, J, Jezkova, J, Hana, V, et al. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the leksell gamma knife? Eur J Endocrinology. 2011;164:169–78.CrossRefGoogle ScholarPubMed
14. Feigl, GC, Pistracher, K, Berghold, A, Mokry, M. Pituitary insufficiency as a side effect after radiosurgery for pituitary adenomas: the role of the hypothalamus. J Neurosurg. 2010;113:153–9.CrossRefGoogle ScholarPubMed
15. Leenstra, JL, Tanaka, S, Kline, RW, et al. Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery. 2010;67(1):2733.CrossRefGoogle ScholarPubMed
16. Stafford, SL, Pollock, BE, Leavitt, JA, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiation Oncology Biol Phys. 2003:55(5):1177–81.CrossRefGoogle Scholar
17. Tishler, RB, Loeffler, JS, Lunsford, LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Onc Biol Phys. 1993;27(2):215–21.CrossRefGoogle ScholarPubMed
18. Leber, KA, Berglöff, J, Pendl, G. Dose-response of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88:4350.CrossRefGoogle ScholarPubMed
19. Jagannathan, J, Yen, CP, Pouratian, N, et al. Stereotactic radiosurgery for pituitary adenomas: a comprehensive review of indications, techniques and long-term results using Gamma Knife. J Neurooncol. 2009;92:345–56.CrossRefGoogle ScholarPubMed
20. Morita, A, Coffey, RJ, Foote, RL, Schiff, D, Gorman, D. Risk of injury to cranial nerves after gamma knife radiosurgery for skull base meningiomas: Experience in 88 patients. J Neurosurg. 1999;90:42–9.CrossRefGoogle ScholarPubMed
21. Tishler, RB, Loeffler, JS, Lunsford, LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Onc Biol Phys. 1993;27(2):215–21.CrossRefGoogle ScholarPubMed