Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:45:02.430Z Has data issue: false hasContentIssue false

Factors Determining the Clinical Complications of Radiosurgery for AVM

Published online by Cambridge University Press:  23 September 2014

Matylda Machnowska*
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Patamintita Taeshineetanakul
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Sasikhan Geibprasert
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Ravi Menezes
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Ronit Agid
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Karel G. Terbrugge
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
Yuri Andrade-Souza
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
Michael L. Schwartz
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
Timo Krings
Affiliation:
Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
*
University of Toronto, Toronto Western Hospital, UHN, Division of Neuroradiology, 399 Bathurst St., 3MCL - 429, Toronto, Ontario, M5T 2S8, Canada. Email: mmachnowska@gmail.com.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Purpose:

To identify the predictors of symptomatic post-radiation T2 signal change in patients with arteriovenous malformations (AVM) treated with radiosurgery.

Materials and Methods:

The charts of 211 consecutive patients with arteriovenous malformations treated with either gamma knife radisurgery or linear accelerator radiosurgery between 2000-2009 were retrospectively reviewed. 168 patients had a minimum of 12 months of clinical and radiologic follow-up following the procedure and complete dosage data. Pretreatment characteristics and dosimetric variables were analyzed to identify predictors of adverse radiation effects.

Results:

141 patients had no clinical symptomatic complications. 21 patients had global or focal neurological deficits attributed to symptomatic edema. Variables associated with development of symptomatic edema included a non-hemorrhagic symptomatic presentation compared to presentation with hemorrhage, p=0.001; OR (95%CI) = 6.26 (1.99, 19.69); the presence of venous rerouting compared to the lack of venous rerouting, p=0.031; OR (95% CI) = 3.25 (1.20, 8.80); radiosurgery with GKS compared to linear accelerator radiosurgery p = 0.012; OR (95% CI) = 4.58 (1.28, 16.32); and the presence of more than one draining vein compared to a single draining vein p = 0.032; OR (95% CI) = 2.82 (1.06, 7.50).

Conclusions:

We postulated that the higher maximal doses used with gamma knife radiosurgery may be responsible for the greater number of adverse radiation effects with this modality compared to linear accelerator radiosurgery. We found that AVMs with greater venous complexity and therefore instability resulted in more adverse treatment outcomes, suggesting that AVM angioarchitecture should be considered when making treatment decisions.

Résumé

RÉSUMÉObjectif:

Le but de l'étude était d'identifier les facteurs de prédiction de changement du signal T2 qui sont symptomatiques après l'irradiation chez des patients présentant une malformation artérioveineuse (MAV) traitée par radiochirurgie.

Méthode:

Les dossiers de 211 patients consécutifs atteints d'une MAV, qui ont été traités soit par radiochirurgie par scalpel gamma ou par radiochirurgie par accélérateur linéaire entre 2000 et 2009, ont été examinés rétrospectivement. Un suivi clinique et radiologique d'au moins 12 mois après le traitement était disponible ainsi que des données complètes sur la dose administrée chez 168 patients. Les caractéristiques avant le traitement et les variables dosimétriques ont été analysées pour identifier les facteurs de prédiction d'effets indésirables de l'irradiation.

Résultats:

Cent quarante et un patients n'ont pas présenté de complication symptomatique au point de vue clinique. Vingt et un patients ont présenté des déficits neurologiques globaux ou focaux attribués à un œdème symptomatique. L'une des variables associées à un œdème symptomatique était une symptomatologie non reliée à une hémorragie au moment de la consultation initiale par rapport une symptomatologie reliée à la présence d'une hémorragie (p = 0,001), RC = 6,26 ; IC à 95% : (1,99 à 19,69) ; la présence de déviation de la circulation veineuse par rapport à son absence (p = 0,031 ; RC = 3,25 ; IC à 95% : 1,20 à 8,80) ; la radiochirurgie par scalpel gamma par rapport à la radiochirurgie par accélérateur linéaire (p = 0,012 ; RC 95% = 4,58 ; IC à 95% : 1,28 à 16,32) ; et la présence de plus d'une veine de drainage par rapport à la présence d'une seule veine de drainage (p = 0,032 ; RC = 2,82 ; IC à 95% 1,06 à 7,50).

Conclusions:

Nous avons émis l'hypothèse que les doses maximales plus élevées utilisées lors de la radiochirurgie par scalpel gamma pourraient être responsables du plus grand nombre d'incidents thérapeutiques dus à l'irradiation par rapport à la radiochirurgie par accélérateur linéaire. Nous avons observé de moins bons résultats du traitement des MAV possédant une plus grande complexité veineuse et donc une plus grande instabilité, ce qui suggère que l'architecture des vaisseaux d'une MAV devrait être prise en considération lorsque du choix du traitement.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Friedlander, RM. Arteriovenous malformations of the brain. N Engl J Med. 2007;356(26):270412.Google Scholar
2. Gross, BA, Du, R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg. 2013;118(2):43743.Google Scholar
3. Lim, M, Cheshier, S, Steinberg, GK. New vessel formation in the central nervous system during tumor growth, vascular malformations, and moyamoya. Curr Neurovasc Res. 2006;3(3):23745.CrossRefGoogle ScholarPubMed
4. Sure, U, Butz, N, Schlegel, J, et al. Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. J Neurosurg. 2001;94(6):9727.Google Scholar
5. Pollock, BE, Gorman, DA, Coffey, RJ. Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery. 2003;52 (6):12917.CrossRefGoogle ScholarPubMed
6. Pollock, BE, Flickinger, JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96 (1):7985.Google Scholar
7. Andrade-Souza, YM, Zadeh, G, Ramani, M, Scora, D, Tsao, MN, Schwartz, ML. Testing the radiosurgery-based arteriovenous malformation score and the modified spetzler-martin grading system to predict radiosurgical outcome. J Neurosurg. 2005;103(4):6428.Google Scholar
8. Pollock, BE, Flickinger, JC. Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery. 2008;63(2):23943.Google Scholar
9. Pollock, BE, Flickinger, JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96(1):7985.CrossRefGoogle ScholarPubMed
10. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous malformation radiosurgery study group. Int J Radiat Oncol Biol Phys. 2000;46(5):11438.Google Scholar
11. Flickinger, JC, Kondziolka, D, Lunsford, LD, et al. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 1999;44(1):6774.Google Scholar
12. Flickinger, JC, Lunsford, LD, Kondziolka, D, et al. Radiosurgery and brain tolerance: an analysis of neurodiagnostic imaging changes after gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys. 1992;23(1):1926.Google Scholar
13. Lee, J, Girvigian, M, Miller, M, et al. Validation of a radiosurgery-based grading system for arteriovenous malformations. In: Kondziolka D, editor. Radiosurgery. Basel: Karger; 2006: 2218.Google Scholar
14. Cohen-Gadol, AA, Pollock, BE. Radiosurgery for arteriovenous malformations in children. J Neurosurg. 2006;104(6 Suppl): 38891.Google Scholar
15. Moreno-Jimenez, S, Celis, M, Larraga-Gutierrez, J, et al. Intracranial arteriovenous malformations treated with LINAC-based conformal radiosurgery: validation of the radiosurgery-based arteriovenous malformation score as a predictor of outcome. Neurol Res. 2007;29(7):71216.Google Scholar
16. Flickinger, J, Kondziolka, D, Kalend, A, Maitz, A, Lunsford, L. Radiosurgery-related imaging changes in surrounding brain: Multivariate analysis and model evaluation. In: Kondziolka D, editor. Radiosurgery 1995. Switzerland: Kargel; 1996. p 229.Google Scholar
17. Flickinger, JC, Kondziolka, D, Maitz, AH, Lunsford, LD. Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys. 1998;40(2):2738.Google Scholar
18. Flickinger, JC. An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys. 1989;17(4):87985.Google Scholar
19. Sirin, S, Kondziolka, D, Niranjan, A, Flickinger, JC, Maitz, AH, Lunsford, LD. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2006;58(1):1727.Google Scholar
20. Sun, DQ, Carson, KA, Raza, SM, et al. The radiosurgical treatment of arteriovenous malformations: obliteration, morbidities, and performance status. Int J Radiat Oncol Biol Phys. 2011;80(2): 35461.Google Scholar
21. Nataf, F, Ghossoub, M, Missir, O, et al. Parenchymal changes after radiosurgery of cerebral arteriovenous malformations. clinical and MRI data. Neurochirurgie. 2001;47(2–3 Pt 2):35568.Google Scholar
22. Levegrun, S, Hof, H, Essig, M, Schlegel, W, Debus, J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys. 2004;59 (3):796808.Google Scholar
23. Douglas, JG, Goodkin, R. Treatment of arteriovenous malformations using gamma knife surgery: the experience at the University of Washington from 2000 to 2005. J Neurosurg. 2008;109 Suppl:516.Google Scholar
24. Hayhurst, C, Monsalves, E, van Prooijen, M, et al. Pretreatment predictors of adverse radiation effects after radiosurgery for arteriovenous malformation. Int J Radiat Oncol Biol Phys. 2012;82(2):8038.CrossRefGoogle ScholarPubMed
25. Friedman, WA, Bova, FJ, Bollampally, S, Bradshaw, P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296307; discussion 307–8.Google Scholar
26. Pollock, BE. Occlusive hyperemia: a radiosurgical phenomenon? Neurosurgery. 2000;47(5):117882; discussion 1182–4.Google Scholar
27. Santos, ML, Demartini Jàcute;nior, Z, Matos, LA, et al. Angioarchitecture and clinical presentation of brain arteriovenous malformations. Arq Neuropsiquiatr. 2009;67(2A):31621.Google Scholar
28. Taeshineetanakul, P, Krings, T, Geibprasert, S, et al. Angioarchitecture determines obliteration rate following radiosurgery in brain arteriovenous malformations. Neurosurgery. 2012;71(6):10718.Google Scholar
29. van den Berg, R, Buis, DR, Lagerwaard, FJ, Lycklama à Nijeholt, GJ, Vandertop, WP. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery. 2008;63(6):10649; discussion 1069–70.Google Scholar
30. Lv, X, Li, Y, Yang, X, Jiang, C, Wu, Z. Characteristics of brain arteriovenous malformations in patients presenting with nonhemorrhagic neurologic deficits. World Neurosurg. 2012;79(3–4):4848.Google Scholar
31. Orio, P, Stelzer, KJ, Goodkin, R, Douglas, JG. Treatment of arteriovenous malformations with linear accelerator-based radiosurgery compared with gamma knife surgery. J Neurosurg. 2006;105 Suppl:5863.Google Scholar
32. Izawa, M, Hayashi, M, Chernov, M, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102 Suppl:347.Google Scholar
33. Raffa, SJ, Chi, Y, Bova, FJ, Friedman, WA. Validation of the radiosurgery-based arteriovenous malformation score in a large linear accelerator radiosurgery experience. J Neurosurg. 2009;111(4):8329.Google Scholar
34. Karlsson, B, Lax, I, Soderman, M. Factors influencing the risk for complications following gamma knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol. 1997;43(3):27580.Google Scholar
35. Kader, A, Young, WL, Pile-Spellman, J, et al. The influence of hemodynamic and anatomic factors on hemorrhage from cerebral arteriovenous malformations. Neurosurgery. 1994;34(5):8017; discussion 807–8.Google Scholar
36. Spetzler, RF, Hargraves, RW, McCormick, PW, Zabramski, JM, Flom, RA, Zimmerman, RS. Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations. J Neurosurg. 1992;76(6):91823.Google Scholar
37. Stefani, MA, Porter, PJ, terBrugge, KG Montanera, W, Willinsky, RA, Wallace, MC. Angioarchitectural factors present in brain arteriovenous malformations associated with hemorrhagic presentation. Stroke. 2002;33(4):9204.Google Scholar
38. Hollerhage, HG. Venous drainage system and risk of hemorrhage from AVM's. J Neurosurg. 1992;77(4):6524.Google ScholarPubMed
39. Kim, BS, Sarma, D, Lee, SK, terBrugge, KG. Brain edema associated with unruptured brain arteriovenous malformations. Neuroradiology. 2009;51(5):32735.Google Scholar
40. Young, C, Summerfield, R, Schwartz, M, O'Brien, P, Ramani, R. Radiosurgery for arteriovenous malformations: the University of Toronto experience. Can J Neurol Sci. 1997;24(2):99105.Google Scholar