Skip to main content Accessibility help
×
Home

Effect of Cerebral Perfusion Pressure on Acute Respiratory Distress Syndrome

  • Sonny Thiara (a1), Donald E. Griesdale (a1) (a2) (a3), William R. Henderson (a4) and Mypinder S. Sekhon (a1)

Abstract

Background: Increased cerebral perfusion pressure (CPP)>70 mmHg has been associated with acute respiratory distress syndrome (ARDS) after traumatic brain injury (TBI). Since this reported association, significant changes in ventilation strategies and fluid management have been accepted as routine critical care. Recently, individualized perfusion targets using autoregulation monitoring suggest CPP titration>70 mmHg. Given these clinical advances, the association between ARDS and increased CPP requires further delineation. Objective: To determine the association between ARDS and increased CPP after TBI. Methods: We conducted a single-center historical cohort study investigating the association of increased CPP and ARDS after TBI. We collected demographic data and physiologic data for CPP, intracranial pressure, mechanical ventilation, cumulative fluid balance and delta/driving pressure (ΔP). We collected outcomes measures pertaining to duration of ventilation, intensive care unit admission length, hospitalization length and 6-month neurological outcome. Results: In total, 113 patients with severe TBI and multimodal neuromonitoring were included. In total, 16 patients (14%) developed ARDS according to the Berlin definition. There was no difference in the mean CPP during the first 7 days of admission between patients who developed ARDS (74 mmHg SD 18 vs. 73 mmHg SD 18, p=0.86) versus those who did not. Patients who developed ARDS had a higher ΔP (15 mmHg [5] vs. 12 mmHg [4], p=0.016) and lower lung compliance (35 ml/cmH2O [10] vs. 49 ml/cmH2O [18], p=0.024) versus those who did not. Conclusion: We did not observe an association between increased CPP and ARDS. Patients with ARDS had higher ΔP and lower lung compliance.

Les effets de la pression de perfusion cérébrale sur les syndromes de détresse respiratoire aigüe. Contexte: À la suite de traumatismes cranio-cérébraux (TCC), une augmentation de la pression de perfusion cérébrale (PPC) au-dessus de 70 mm Hg est associée au déclenchement de syndromes de détresse respiratoire aigüe (SDRA). Depuis que cette association a été signalée, des changements notables en ce qui a trait aux stratégies de ventilation et à l’administration de liquides font désormais partie de la panoplie des soins intensifs les plus courants. Plus récemment, des valeurs seuils de perfusion utilisant des techniques de monitorage autorégulé ont suggéré, pour la PPC, une titrimétrie pouvant dépassant les 70 mm Hg. Considérant ces progrès sur le plan clinique, le lien existant entre les SDRA et une augmentation de la PPC nécessite d’être approfondi. Objectif: Déterminer le lien pouvant exister entre les SDRA et une augmentation de la PPC à la suite de TCC. Méthodes: Dans un seul établissement de santé, nous avons mené une étude de cohorte historique se penchant sur le lien existant entre une augmentation de la PPC et les SDRA à la suite de TCC. Pour ce faire, nous avons collecté auprès de patients des données physiologiques et démographiques se rapportant aux aspects suivants : PPC, pression intracrânienne, ventilation mécanique, équilibre hydrique cumulatif et pression motrice (ΔP). Nous avons également déterminé des critères d’évaluation se rapportant à la durée de la ventilation, de l’admission aux soins intensifs, de l’hospitalisation mais aussi à l’évolution, sur le plan neurologique, de l’état de santé des patients au bout de 6 mois. Résultats: Au total, 113 patients victimes de TCC sévères et ayant subi un monitorage cérébral multimodal ont été inclus dans cette étude. De ce nombre, 16 d’entre eux, soit 14 %, avaient souffert de SDRA selon les critères de la définition de Berlin. Qu’il s’agisse de patients ayant déjà souffert de SDRA (74 mm Hg SD 18 c. 73 mm Hg SD 18 ; p=0,86) ou de ceux jamais atteints par ce syndrome, aucune différence n’a été observée en ce qui a trait à leur PPC moyenne durant les 7 premiers jours d’admission. Cela dit, les patients ayant souffert de SDRA ont montré une pression motrice (ΔP) plus élevée (15 mm Hg [5] c. 12 mm Hg [4] ; p=0,016) et une compliance ou élasticité pulmonaire plus basse (35 ml/cmH2O [10] c. 49 ml/cmH2O [18] ; p=0,024) que ceux n’ayant pas souffert de SDRA. Conclusion: Nous n’avons pas observé de lien entre une augmentation de la PPC et l’apparition de SDRA. Les patients atteints de SDRA ont toutefois montré une pression motrice (ΔP) plus élevée et une compliance pulmonaire plus basse.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of Cerebral Perfusion Pressure on Acute Respiratory Distress Syndrome
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of Cerebral Perfusion Pressure on Acute Respiratory Distress Syndrome
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of Cerebral Perfusion Pressure on Acute Respiratory Distress Syndrome
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Mypinder S. Sekhon, Critical Care Medicine, Vancouver General Hospital, Room 2438, Jim Pattison Pavilion, 2nd Floor, 855 West 12th Avenue, Vancouver, BC, Canada V5Z 1M9. Email: mypindersekhon@gmail.com

References

Hide All
1. Ghajar, J. Traumatic brain injury. Lancet. 2000;356:923-929.
2. Czosnyka, M, Pickard, J. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813-821.
3. Robertson, CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology. 2001;95:1513-1517.
4. Carney, N, Totten, AM, OʼReilly, C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6-15.
5. Robertson, CS, Valadka, AB, Hannay, HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:2086-2095.
6. Rincon, F, Ghosh, S, Dey, S, et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery. 2012;71:795-803.
7. Hendrickson, CM, Howard, BM, Kornblith, LZ, et al. The acute respiratory distress syndrome following isolated severe traumatic brain injury. J Trauma Acute Care Surg. 2016;80:989-997.
8. Czosnyka, M, Brady, K, Reinhard, M, Smielewski, P, Steiner, LA. Monitoring of cerebrovascular autoregulation : facts, myths, and missing links Neurocrit Care. 2009:373-386.
9. Le Roux, P, Menon, DK, Citerio, G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive. Intensive Care Med. 2014;40:1189-1209.
10. Aries, MJ, Czosnyka, M, Budohoski, KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456-2463.
11. Sekhon, MS, Gooderham, P, Toyota, B, et al. Implementation of neurocritical care is associated with improved outcomes in traumatic brain injury. Can J Neurol Sci. 2017;44(4):350-357.
12. Vandenbroucke, JP, von Elm, E, Altman, DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology. 2007;18:805-835.
13. Maas, AIR, Hukkelhoven, CWPM, Marshall, LF, Steyerberg, EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57:1173-1182.
14. Aries, MJH, Czosnyka, M, Budohoski, KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456-2463.
15. Steiner, LA, Czosnyka, M, Piechnik, SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733-738.
16. Patel, HC, Menon, DK, Tebbs, S, Hawker, R, Hutchinson, PJ, Kirkpatrick, PJ. Specialist neurocritical care and outcome from head injury. Intensive Care Med. 2002;28:547-553.
17. Smielewski, P, Aries, M, Lavinio, A, et al. Use of ICM+ Software for tracking “Optimal” CPP values in real time. Eur J Anaesthesiol. 2012;29:A34.
18. ARDS Definition Task Force, Ranieri, VM, Rubenfeld, GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526-2533.
19. Aisiku, IP, Yamal, J-M, Doshi, P, et al. The incidence of ARDS and associated mortality in severe TBI using the Berlin definition. J Trauma Acute Care Surg. 2016;80:308-312.
20. Contant, CF, Valadka, AB, Gopinath, SP, Hannay, HJ, Robertson, CS. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95:560-568.
21. Amato, MBP, Meade, MO, Slutsky, AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747-755.
22. Guérin, C, Papazian, L, Reignier, J, et al. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care. 2016;20:38.
23. Tejerina, E, Pelosi, P, Muriel, A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341-345.
24. Oddo, M, Nduom, E, Frangos, S, et al. Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury. Neurosurgery. 2010;67:338-344.
25. Go, SL, Singh, JM. Pro/con debate: should PaCO2 be tightly controlled in all patients with acute brain injuries? Crit Care. 2013;17:202.
26. Rangel-Castilla, L, Lara, LR, Gopinath, S, Swank, PR, Valadka, A, Robertson, C. Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury. J Neurotrauma. 2010;27:1853-1863.
27. Meng, L, Gelb, AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196-205.
28. Burchiel, KJ, Steege, TD, Wyler, AR. Intracranial pressure changes in brain-injured patients requiring positive end-expiratory pressure ventilation. Neurosurgery. 1981;8:443-449.
29. Shapiro, HM, Marshall, LF. Intracranial pressure responses to PEEP in head-injured patients. J Trauma. 1978;18:254-256.
30. Videtta, W, Villarejo, F, Cohen, M, et al. Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl. 2002;81:93-97.
31. Caricato, A, Conti, G, Della Corte, F, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571-576.
32. Sorrentino, E, Diedler, J, Kasprowicz, M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258-266.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed