Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T01:38:08.963Z Has data issue: false hasContentIssue false

Correlations Histopathologiques et Neurochimiques en Fonction de Lesions de la Regiondu Locus Coeruleus chez le Chat* (Part I)

Published online by Cambridge University Press:  18 September 2015

R. Marchand
Affiliation:
Laboratoires đe Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Laval, Québec, Qué. Canada
M. Fantino
Affiliation:
Laboratoires đe Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Laval, Québec, Qué. Canada
J. Dankova*
Affiliation:
Laboratoires đe Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Laval, Québec, Qué. Canada
L.J. Poirier
Affiliation:
Laboratoires đe Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Laval, Québec, Qué. Canada
*
Laboratoires de Neurobiologie, Pavillon Notre-Dame, 2075 ave de Vitré, Québec, Qué. GIJ 5B3.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unilateral lesions in the area of the loci coeruleus and subcoeruleus in the cat are associated with a significant and sustained decrease of noradrenaline (NA) in the ipsilateral cerebral cortex without any important change in the concentrations of NA in the contralateral cortex and in the spinal cord of both sides. The serotonin (5-HT) concentrations of the spinal cord and cerebral cortex of both sides remained unchanged in the same groups of animals. Bilateral lesions in the same area result also in a marked decrease of NA in the cerebral cortex of both sides. The latter lesions also result in slight decreases of NA in the hypothalamus and of NA and 5-HT in the spinal cord but the NA and 5-HT concentrations of the stria-turn and thalamus and the 5-H T concentrations of the cerebral cortex and hypothalamus are unmodified by such lesions. Unilateral lesions of the area immediately rostral to the locus coeruleus (praelocus lesions) result in a very significant decrease of NA in the ipsilateral cerebral cortex without any change of NA in the contralateral cerebral cortex and spinal cord of both sides. Similar lesions produced bilaterally in another group of cats resulted in marked decreases of NA in the cerebral cortex of both sides and a slight decrease of NA in the thalamus without any change of NA in the striatum, hypothalamus and spinal cord and of 5-HT in the cerebral cortex. In the same group of animals with lesions which, however, extended more closely to the midline than in cats with locus coeruleus lesions, 5-HT is markedly decreased in the striatum and thalamus and slightly decreased in the hypothalamus and spinal cord.

These results support the view that the noradrenergie coeruleo-cortical pathway is made up of fibers which originate in the loci coeruleus and subcoeruleus and pre-dominently end ipsilaterally to their origin in the cerebral cortex. Ascending NA fibers ending in the thalamus appear to originate from NA neurons located more laterally in the upper pons and more specifically at the level of the parabrachial nuclei.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

Footnotes

*

Supported by grant MT-732 from the Medical Research Council of Canada.

References

Anden, N. E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U. (1966). Ascending monoamine neurons to the telecephalon and diencephalon. Acta Physiol. Scand., 67: 313326.CrossRefGoogle Scholar
Anlezark, G. M., Crow, T. J. and Greenway, A. P. (1973). Impaired learning and decreased cortical norepine-phrine after bilateral locus coeruleus lesions. Science, 181: 682684.CrossRefGoogle Scholar
Arbuthnott, G. W., Christie, J. E., Crow, T. J., Eccleston, D. and Walter, D. S. (1973). Lesions of the locus coeruleus and noradrenaline metabolism in cerebral cortex. Exp. Neurol., 41: 411417.CrossRefGoogle Scholar
Battista, A., Fuxe, K., Goldstein, M. and Ogawa, M. (1972). Mapping of central monoamine neurons in the monkey. Experientia (Basel), 28: 688690.CrossRefGoogle ScholarPubMed
Bedard, P., Larochelle, L., Parent, A. and Poirier, L. J. (1969). The nigrostriatal pathway: a correlative study based on neuroanatomical and neuro-chemical criteria in the cat and the monkey. Exp. Neurol. 25: 365377.CrossRefGoogle Scholar
Butcher, L. L., Eastgate, S. M. and Hodge, G. K. (1974). Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration: comparison with copper sulfate and factors governing the department of fluids injected into brain. Arch. Pharm., 285: 3170.CrossRefGoogle Scholar
Chu, N. S. and Bloom, F. E. (1974). The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Research, 66: 121.CrossRefGoogle Scholar
Corrodi, H., Fuxe, K., Hamberger, B. and Ljungdahl, A. (1970). Studies on central and peripheral noradrenergic neurons using a new dopamine/3-hydroxy-lase inhibitor. Eur. J. Pharmacol., 12: 145155.CrossRefGoogle Scholar
Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand., 62, Suppl. 232: 155.Google Scholar
Goldstein, M., Anagnoste, B., Owen, W. S. and Battista, A. F. (1966). The effects of ventromedial tegmental lesions of the biosynthesis of catecholamines in the striatum. Life Sci., 5: 21712176.CrossRefGoogle Scholar
Hartman, B. K. and Udenfriend, S. (1972). The application of immunological techniques to the study of enzymes regulating catecholamine synthesis and degradation. Pharmacol. Rev., 24: 311329.Google Scholar
Heller, A., Harvey, J. and Moore, R. (1962). A demonstration of a fall in brain serotonin following central nervous system lesion in the rat. Biochem. Pharmac, 11: 859866.CrossRefGoogle ScholarPubMed
Hubbard, J. E. and Dicarlo, V. (1973). Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimirí sciureus). I. The locus coeruleus. J. comp. Neur., 147: 553566.Google ScholarPubMed
Jones, B. E., Bobillier, P., Pin, C. and Jouvet, M. (1973). The effects of lesion of catecholamine containing neurons upon monoamine content of the brain and EEG and behavioural waking in the cat. Brain Res., 58: 157177.CrossRefGoogle ScholarPubMed
Jones, B. E., Harper, S. T. and Halaris, A. E. (1977). Effects of locus coeruleus lecions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res., 124: 473496.CrossRefGoogle Scholar
Jones, B. E. and Moore, R. Y. (1974). Catecholamine-containing neurons of the nucleus locus coeruleus in the cat. J. comp. Neur., 157: 4351.CrossRefGoogle ScholarPubMed
Kehr, W., Lindqvist, M. and Carlsson, A. (1976). Distribution of dopamine in the rat cerebral cortex. Journal of Neural Transmission, 38: 173180.CrossRefGoogle ScholarPubMed
Klüver, H. and Barrera, E. (1953). A method for the combined staining of cells and fibers in the nervous system. J. Neuropath, exp. Neurol., 12: 400403.CrossRefGoogle ScholarPubMed
Kobayashi, R. M., Palkovits, M., Kopin, I, and Jacobowitz, D. (1974). Biochemical mapping of noradrenergic nerves arising from the rat coeruleus. Brain Res., 77: 269279.CrossRefGoogle ScholarPubMed
Korf, J., Aghajanian, G. K. and Roth, R. H. (1973a). Stimulation and destruction of the locus coeruleus: opposite effects on 3-methoxy 4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex. Europ. J. Pharmacol., 21, 305310.CrossRefGoogle Scholar
Korf, J., Roth, R. H. and Aghajanian, G. K. (1973b). Alterations in turnover and endogenous levels of norepinerphrine in cerebral cortex following electrical stimulation and acute axotomy of cerebral noradrenergic pathways. Europ. J. Pharmacol., 23: 276282.CrossRefGoogle Scholar
Kuhar, M. J., Roth, R. H. and Aghajanian, G. K. (1972). Synthesis of catacholamines in the locus coeruleus from H3-tyrosine in vivo. Biochem. Pharmacol., 21: 22802282.CrossRefGoogle Scholar
Lindvall, O., Björklund, A., Nobin, A. and Stenevi, U. (1974). The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J. comp. Neur., 154: 317347.CrossRefGoogle ScholarPubMed
Macbrown, R. and Goldman, P. S. (1977). Catecholamines in neocortex of rhesus monkeys: regional distribution and ontogenetic development. Brain Res., 124: 576580.Google ScholarPubMed
Maeda, T., Pin, C., Salvert, D., Ligier, M. et Jouvet, M. (1973). Les neurones contenant des catecholamines du tegmentum pontique et leurs voies de projection chez le chat. Brain Res., 57: 119152.CrossRefGoogle Scholar
Maeda, T. et Shimizu, N. (1972). Projections ascendantes du locus coeruleus et d'autres neurones aminergiques pontiques au niveau du prosencéphale du rat. Brain Res., 36: 1935.CrossRefGoogle Scholar
Maickel, R. P., Cox, R. H. Jr., Saillant, J. and Miller, F. P. (1968). A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int. J. Neuropharmacol. 7: 275281.CrossRefGoogle ScholarPubMed
Marchand, R., Fantino, M. and Poirier, L. J. (1975). Effect of locus coeruleus lesions on monoamines in the CNS of the cat. Neuroscience Abstracts, 1: 307.Google Scholar
Parent, A. and Poirier, L. J. (1969). The medial forebrain bundle (MFB) and ascending monoaminergic pathway in the cat. Can. J. Physiol. Pharmac, 47: 781785.CrossRefGoogle ScholarPubMed
Pickel, V. M., Segal, M. and Bloom, F. E. (1974). A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. comp. Neur., 155: 1542.CrossRefGoogle ScholarPubMed
Pin, C., Jones, B. and Jouvet, M. (1968). Topographie des neurones monoaminergiques du tronc cérébral du chat: étude par histofluorescence. C. R. Soc. Biol. (Paris), 162: 21362141.Google ScholarPubMed
Poirier, L. J. (1960). Experimental and histological study of midbrain dyskinesias. J. Neurophysiol., 23: 534551.CrossRefGoogle ScholarPubMed
Poirier, L. J., Bedard, P., Langelier, P., Larochelle, L., Parent, A. and Roberge, A. G. (1972a). Les circuits neuronaux impliqués dans la physiopathologie des sydromes parkinsoniens. Rev. Neurol., 127: 3750.Google Scholar
Poirier, L. J., Bouvier, G., Bedard, P., Boucher, R., Larochelle, L., Olivier, A. and Singh, P. (1969). Essai sur les circuits neuronaux impliqués dans le tremblement postural et l'hypokinésie. Rev. Neurol., 120: 1540.Google Scholar
Poirier, L. J., Langelier, P., Roberge, A. G., Boucher, R. and Kitsikis, A. (1972b). Non-specific histo-pathological changes induced by the intracerebral injection of 6-hydroxy-dopamine (6-OH-DA). J. Neurol. Sci., 16: 401416.CrossRefGoogle Scholar
Poirier, L. J., Singh, P., Boucher, R., Bouvier, G., Olivier, A. and Larochelle, L. (1967). Effect of brain lesions on the concentration of the striatal dopamine and serotonin in the cat. Arch. Neurol., 17: 601608.CrossRefGoogle Scholar
Poirier, L. J. and Sourkes, T. L. (1965). Influence of the substantia nigra on the catecholamine content of the striatum. Brain, 88: 181192.CrossRefGoogle ScholarPubMed
Poirier, L.J., Sourkes, T.L., Bouvier, G., Boucher, R. and Carabin, S. (1966) Striatal amines, experimental tremor and the effect of harmaline in the monkey. Brain, 89: 3752.CrossRefGoogle ScholarPubMed
Poitras, D. (1977). Etude histochimique et biochimique de la distribution et des projections des neurones monoaminergiques du tronc cérébral et de l'hypothalamus chez le chat. Thèse, Québec, 199 pp.Google Scholar
Poitras, D. and Parent, A. (1975). Distribution of monoamine-containing neurons in the brain stem of the cat. Can. Fed. Biol. Soc. Proceed., 18: 31 (abstract).Google Scholar
Poitras, D. and Parent, A. (1978). Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J. comp. Neur., 179: 699718.CrossRefGoogle ScholarPubMed
Ross, R. A. and Reis, D. J. (1974). Effects of lesions of locus coeruleus on regional distribution of dopamine-﹜-hydroxylase activity in rat brain. Brain Res., 73: 161166.CrossRefGoogle Scholar
Roussel, B., Pujol, J. F. et Jouvet, M. (1976). Effet des lésions du tegmentum pontique sur les états de sommeil chez le rat. Arch, italiennes de Biologie, 114: 188209.Google Scholar
Segal, M., Pickel, V. and Bloom, F. E. (1973). The projections of the necleus locus coeruleus: an antoradiographic study. Life Sci., 13: 817821.CrossRefGoogle Scholar
Snider, R. S. and Niemer, W. T. (1961). A stereotaxic atlas of the cat brain. The University of Chicago Press, Chicago.Google Scholar
Sourkes, T. L. and Poirier, L. J. (1966). Neurochemical bases of tremor and other disorders of movement. Can Med. Ass. J., 94: 5360.Google ScholarPubMed
Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand., Suppl. 367: 148.CrossRefGoogle ScholarPubMed
Welch, A. S. and Welch, B. L. (1969). Solvent extraction method for simultaneous determination of norepinephrine, dopa-mine, serotonin and 5-hydroxy-indoleacetic acid in a single mouse brain. Anal. Biochem., 30: 161179.CrossRefGoogle Scholar
Worth, W. S., Collins, J., Kett, D. and Austin, J. H. (1976). Serial changes in norepinephrine and dopamine in rat brain after locus coeruleus lesions. Brain Res., 106: 198203.CrossRefGoogle ScholarPubMed
Zolovick, A.J., Stern, W.C., Jałowiec, J. E., Paksepp, J. and Morgane, P. J. (1973). Sleep-waking patterns and brain biogenic amine levels in cats after administration of 6-hydroxy-dopamine into the dorsolateral pontine tegmentum. Pharmacol. Biochem. Behav., 1: 557568.CrossRefGoogle Scholar