Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T18:03:13.611Z Has data issue: false hasContentIssue false

Cerebral Dysplasias as Expressions of Altered Maturational Processes

Published online by Cambridge University Press:  18 September 2015

Harvey B. Sarnat*
Affiliation:
Departments of Paediatrics, Pathology and Clinical Neuroscience, University of Calgary Faculty of Medicine, Calgary
*
Alberta Children's Hospital, 1820 Richmond Road S.W, Calgary, Alberta, Canada T2T 5C7>
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review identifies the fundamental anatomical and physiological processes that provide the substrates of maturation in the developing nervous system. Cerebral malformations may be viewed from the perspective of aberrations in one or more of these processes. The maturational processes are generally sequential but with considerable temporal precision and overlap: 1) neuronogenesis and gliogenesis, including neural induction by the notochord and primary segmentation of the nervous system; 2) programmed cell death of excess neuroblasts and glioblasts; 3) neuroblast migration; 4) formation and growth of neurites; 5) development of membrane polarity and excitability; 6) synaptogenesis; 7) biosynthesis of neurotransmitters and other secretory products; and 8) myelination of axons. The anatomical and synaptic organization of the fetal brain differs greatly from the mature state. An excess of axonal collaterals, dendritic branches, spines and synapses are formed and later selectively deleted. Transitory neurons, specialized glial cells, synaptic circuits and transient neurotransmitter systems serve as functional elements for a limited time. The clinical expression of these transitory features of the fetal brain are incompletely understood, particularly in the context of embryonic cerebral plasticity.

Type
Symposium
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

1.Sauer, FC. Mitosis in the neural tube. J Comp Neurol 1935; 62: 377405.CrossRefGoogle Scholar
2.Duprat, AM, Gualandris, L, Kan, P,et al. Review: Neural induction. Arch d’Anat Microsc Morphol Exp 1987; 75: 211227.Google Scholar
3.Samat, HB. Cerebral Dysgenesis.Embryology and Clinical Expression. New York: Oxford University Press, 1992:in press.Google Scholar
4.Keynes, RJ, Lumsden, A. Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron 1990; 2: 19.CrossRefGoogle Scholar
5.Trevarrow, B, Marks, DL, Kimmel, CB. Organization of hindbrain segments in the zebrafish embryo. Neuron 1990; 4: 669679.CrossRefGoogle ScholarPubMed
6.Marin-Padilla, M. Embryology and pathology of axial skeletal and neural dysraphic disorders. Can J Neurol Sci 1990; 17: 153169.Google Scholar
7.Hamburger, V, Levi-Montalcini, R. Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 1949; 111: 457502.CrossRefGoogle ScholarPubMed
8.Nurcombe, V, McGrath, PA, Bennett, MR. PPostnatal death of motor neurons during the development of the brachial spinal cord of the rat. Neurosci Lett 1981; 27: 249254.CrossRefGoogle Scholar
9.Okada, N, Oppenheim, RW. Cell death of motoneurons in the chick embryo spinal cord. J Neurosci 1984; 4: 16391639.CrossRefGoogle Scholar
10.Oppenheim, RW, Prevette, D, Tytell, M, et al. Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and RNA synthesis: Evidence for the role of cell death genes. Dev Biol 1990; 138: 104113.CrossRefGoogle ScholarPubMed
11.McManaman, JL, Oppenheim, RW, Prevette, D, et al. Rescue of motoneurons from cell death by a purified skeletal muscle polypeptide: Effects of the ChAT development factor, CDF. Neuron 1990; 4: 891898.CrossRefGoogle ScholarPubMed
12.Samat, HB, Jacob, P, Jiménez, C. Atrophie spinale musculaire: L’évanouissement de la fluorescence à l’A.R.N. des neurones moteurs en fégénérescence: fluorescence: une étude à l’acridine-orange. Rev Neurol (Paris) 1989; 145: 305311.Google Scholar
13.Rakic, P, Yakovlev, PI, Tytell, M, et al. Development of the corpus callosum and cavum septi in man. J Comp Neurol 1968; 132: 4572.CrossRefGoogle ScholarPubMed
14.Zaki, WLe processus dégéné>rtif au cours du développement du corps calleux corpus callosum and cavum septi in man. Arch Anat Micr Morphol Expér 1985; 74: 133149.Google Scholar
15.Marques, MJ, Harmant-van Rijckevorsel, G, Landrieu, P, et al. Prenatal cytomegalovirus disease and cerebral microgyria: Evidence> for perfusion failure, not disturbance of histogenesis, as the major cause of fetal cytomegalovirus encephalopathy. Neuropediatrics 1984; 15: 1824.CrossRefGoogle Scholar
16.Sidman, RL, Rakic, P. Neuronal migration, with special reference to developing human brain: A review. Brain 1973; 62: 135.Google ScholarPubMed
17.Chi, JG, Dooling, EC, Gilles, FH. Gyral development of the human brain. Ann Neurol 1977; 1: 8693.CrossRefGoogle ScholarPubMed
18.Choi, BH. Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study. Neuropathol Exp Neurol 1986; 45: 408418.CrossRefGoogle ScholarPubMed
19.Choi, BH, Lapham, BH. Evolution of Bergmann glia in developing human fetal cerebellum: A Golgi, electron microscopic and immunofluorescent study. Brain Res 1990; 190: 369383.CrossRefGoogle Scholar
20.Sarnat, HB, Lapham, BH. Regional differentiation of the human fetal ependyma: Immunocytochemical markers. J Neuropathol Exp Neurol 1991; 50: in press.Google Scholar
21.Barth, PG. Disorders of neuronal migration. Can J Neurol Sci 1987; 14: 116.CrossRefGoogle ScholarPubMed
22.Sarnat, HB. Disturbances of late neuronal migrations in the perinatal period. Am J Dis Child 1987; 141: 969980.Google ScholarPubMed
23.Norenberg, MD, Neary, JT, Norenberg, L-OB. Ammonia induced decrease in glial fibrillary acidic protein in cultured astrocytes. J Neuropathol Exp Neurol 1990; 49: 339405.CrossRefGoogle ScholarPubMed
24.Snow, DM, Steindler, DA, Silver, J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: A possible role for a proteoglycan in the development of an axon barrier. Dev Biol 1990; 138: 359376.CrossRefGoogle ScholarPubMed
25.Letourneau, PC, Shattuck, TA, Roche, FK,et al. Nerve growth cone migration onto Schwann cells involves the calcium-dependent adhesion molecule, N-cadherin. Dev Biol 1990; 138: 430442.CrossRefGoogle ScholarPubMed
26.Roessmann, U, Hori, A. Agyria (lissencephaly) with anomalous pyramidal crossing. J Neurol Sci 1985; 69: 357364.CrossRefGoogle ScholarPubMed
27.Takashima, S, Chan, F, Becker, LE. Morphology of the developing visual cortex of the human infant. A quantitative and qualitative Golgi sludy. Neuropathol Exp Neurol 1980; 39: 487501.CrossRefGoogle Scholar
28.Marin-Padilla, M. Abnormal neuronal differentiation (functional maturation) in mental retardation. Birth Defects 1975; 11: 133153.Google ScholarPubMed
29.Suetsugu, M, Mehraein, P. Spine distribution among the apical dendrites of the pyramidal neurons in Down's syndrome. A quantitative Golgi study. Acta Neuropathol 1980; 50: 207210.CrossRefGoogle ScholarPubMed
30.Becker, LE, Takashima, S. Dendritic structure in the leucodystrophies: A Golgi analysis of metachromatic leucodystrophy, adrenoleucodystrophy, Cockayne's disease, and Pelizaeus-Merzbacher disease. Int symp on the leucodystrophies and allied diseases. Kyoto, Japan, 19-20 Sept 1981; 3752Google Scholar
28.Becker, LE. Synaptic dysgenesis. Can J Neurol Sci 1990; 17: 170180.Google Scholar
32.Samat, HB, Alcald, H. Human cerebellar hypoplasia: A syndrome of diverse causes. Arch Neurol 1980; 37: 300305.Google Scholar
33.Spitzer, HB. Development of membrane properties in vertebrates. Tends Neurosci 1981; 4: 169172.Google Scholar
34.West, MJ, Del Cerro, M. Early formation of synapses in the molecular layer of the fetal rat cerebellum. J Comp Neurol 1975; 165: 137160.CrossRefGoogle Scholar
35.Hinds, JW, Hinds, PL. Synapse formation in the mouse olfactory bulb. I. Quantitative studies. J Comp Neurol 1976; 169: 1540.CrossRefGoogle ScholarPubMed
36.McDonald, JW, Johnston, MV. SPhysiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 1990; 15: 4170.CrossRefGoogle ScholarPubMed
37.Sarnat, HB. epartition de l’A.R.N. au cours de la migration neuronale dans les cerveaux normaux et dysplastiques en développement chez l’homme: Étude à l’acridine-orange. Rev Neurol (Paris) 1989; 145: 127133.Google Scholar
38.Yakovlev, PI, Lecours, A-R. The myelination cycles of regional maturation of the brain. In: Minkowski, A ed.Regional Development of the Brain in Early Life. Philadelphia: FA Davis, 1967; 370Google Scholar
39.Gilles, FH. Myelination in the human brain. Hum Pathol 1976; 7: 244248.CrossRefGoogle Scholar
40.Brody, BA, Kinney, HC, Kloman, AS,et al. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 1987; 46: 283301.CrossRefGoogle ScholarPubMed
41.Sarnat, HB, Kinney, HC. Do the corticospinal and corticobulbar tracts mediate functions in the human newborn?. J Neuropathol Exp Neurol 1989; 16: 157160.Google ScholarPubMed
42.Ghatak, NR, Hirano, A, Poon, TP, et al. Trichopoliodystrophy. II. Pathological changes in skeletal muscle and nervous system.. Acta Neuropathol 1972; 26:6072.Google ScholarPubMed
43.Volpe, JJ, Adams, RD. Cerebro-hepato-renal syndrome of Zellweger: An inherited disorder of neuronal migration. Acta Neuropathol 1972; 20:175198.CrossRefGoogle ScholarPubMed
44.Balázs, RB, Brooksbank, WL, Davison, AN, et al. The effect of neonatal thyroidectomy on myelination in the rat brain.. Brain Res 1969; 15–219232.CrossRefGoogle ScholarPubMed
45.Dambska, M, Laure-Kamionowska, M. Myelination as a parameter of normal and retarded brain maturation. Brain Dev (Tokyo) 1990; 12:214220.CrossRefGoogle ScholarPubMed
46.Brun, A. The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in cortical malformations. Acta Pathol Microbiol Scand 1965;179.Google ScholarPubMed
47.Sanides, F, Sas, E. Persistence of horizontal cells of the Cajal foetal type and of the subpial granular layer in parts of the mammalian paleocortex. Z mikr-anat Forschung 1970; 82:570588.Google ScholarPubMed
48.Duckett, S, Pearce, AGE. The cells of Cajal-Retzius in the developing human brain. J Anat 1968; 102: 183187.Google ScholarPubMed
49.Molliver, ME, Kostovic, I, Van der Loos, H. The development of synapses in cerebral cortex of the human fetus. Brain Res 1973; 50: 403407.CrossRefGoogle ScholarPubMed
50.Marin-Padilla, M. Structural organization of the human cerebral cortex prior to the appearance of the cortical plate. Anat Embryol 1983; 168: 2140.CrossRefGoogle Scholar
51.McConnell, SK, Ghosh, A, Shatz, CJ. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 1990; 245: 978982.CrossRefGoogle Scholar
52.Gravel, C, Hawkes, R. Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections. J Comp Neurol 1990; 291: 128146.CrossRefGoogle ScholarPubMed
53.Purves, D, Lichtman, JW. Elimination of synapses in the developing nervous system. Science 1980; 210: 153157.CrossRefGoogle ScholarPubMed
54.Ronnevi, L-O, Conradi, S. Ultrastructural evidence for spontaneous elimination of synaptic terminals on spinal motoneurons in the kitten. Brain Res 1974; 80: 335359.CrossRefGoogle ScholarPubMed
55.Inagaki, S, Sakanaka, S, Shiosaka, S, et al. Experimental and immunohistochemical studies on the cerebellar substance P of the rat: Localization, postnatal ontogeny, and ways of entry into the cerebellum. Neuroscience 1982; 7: 639646.CrossRefGoogle ScholarPubMed
56.Inagaki, S, Shiosaka, S, Takatsuki, K, et al. Ontogeny of somatostatin-containing neuron system of the rat cerebellum including its fibre connections: An experimental and immunohistochemical analysis. Dev Brain Res 1982; 3: 509529.CrossRefGoogle Scholar
57.Johnston, MV, Silverstein, FS, Reindel, FO, et al. Muscarinic cholinergic receptors in human infant forebrain: [3H] quinuclidinyl benzilate binding in homogenates and quantitative autoradiography in sections. Dev Brain Res 1985; 19: 195203.CrossRefGoogle Scholar
58.Satoh, J, Suzuki, K. Tyrosine hydroxylase-immunoreactive neurons in the mouse cerebral cortex during the postnatal period. Dev Brain Res 1990; 53: 15.CrossRefGoogle ScholarPubMed
59. O’Rahilly, R, Gardner, E. The timing and sequence of events in the development of the human nervous system during the embryonic time period proper. Z Anat Entwickl-Gesch 1971; 134: 112.CrossRefGoogle ScholarPubMed
60. Miiller, F, O’Rahilly, R. The human brain at stages 21-23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. ZAnat Embryol 1990; 182: 375400.CrossRefGoogle Scholar