Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T16:54:05.827Z Has data issue: false hasContentIssue false

Bipolar Electrocoagulation on Cortex after AVMs Lesionectomy for Seizure Control

Published online by Cambridge University Press:  23 July 2018

Yong Cao*
Affiliation:
Division of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University
Rong Wang
Affiliation:
Division of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University
Lijun Yang
Affiliation:
Division of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University
Qin Bai
Affiliation:
Department of Electroneurophysiology, Beijing Neurosurgical Institution, Chongwen District, Beijing, China
Shuo Wang
Affiliation:
Division of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University
Jizong Zhao*
Affiliation:
Division of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University
*
Department of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University, 6 Tiantan Xili, Beijing 100050, China
Department of Neurosurgery, Beijing Tiantan Hospital, affiliated to Capital Medical University, 6 Tiantan Xili, Beijing 100050, China
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The findings of previous studies remain controversial on the optimal management required for effective seizure control after surgical excision of arteriovenous malformations (AVMs). We evaluated the efficacy of additional bipolar electrocoagulation on the electrically positive cortex guided by intraoperative electrocorticography (ECoG) for controlling cerebral AVMs-related epilepsy.

Clinical Material and Methods:

Sixty consecutive patients with seizure due to cerebral AVMs, who underwent surgical excision of cerebral AVMs and intraoperative ECoG, were assessed. The AVMs and surrounding hemosiderin stained tissue were completely removed, and bipolar electrocoagulation was applied on the surrounding cerebral cortex where epileptic discharges were monitored via intraoperative ECoG. Patients were followed up at three to six months after the surgery and then annually. We evaluated seizure outcome by using Engel's classification and postoperative complications.

Results:

Forty-nine patients (81.6%) were detected of epileptic discharges before and after AVMs excision. These patients underwent the removal of AVMs plus bipolar electrocoagulation on spike-positive site cortex. After electrocoagulation, 45 patients' epileptic discharges disappeared, while four obviously diminished. Fifty-five of 60 patients (91.7%) had follow-up lasting at least 22 months (mean 51.1 months; range 22-93 months). Determined by the Engel Seizure Outcome Scale, 39 patients (70.9%) were Class I, seven (12.7%) Class II, five (9.0%) Class III, and four (7.2%) Class IV.

Conclusions:

Even alter the complete removal of AVM and sunwinding gliolic and hemosiderin stained tissue, a high-frequency residual spike remained on the surrounding cerebral cortex. Effective surgical seizure control can be achieved by carrying on I additional bipolar electrocoagulation on the cortex guided by the intraoperative ECoG.

Résumé:

Résumé:Contexte:

Les observations faites lors d'etudes anterieures sur le traitement optimal requis pour obtenir un controle efficace des crises convulsives apres resection chirurgicale de malformations arterioveneuses (MAV) demeurent un sujet de controverse. Nous avons evalue l'efficacite de 1'ajout de l'electrocoagulation bipolaire sur le cortex electriquement positif, guide par electrocorticographie (ECoG) pour le controle de I'epilepsie reliee aux MAV cerebrales.

Méthodes:

Soixante patients consecutifs atteints de crises convulsives dues a des MAV cerebrales, qui ont subi une excision chirurgicale d'une MAV cerebrale avec ECoG pendant 1'intervention, ont ete evalues. Les MAV et le tissu avoisinant teinte d'hemosiderine ont ete completement excises et une electrocoagulation bipolaire a ete appliquee sur le cortex cerebral avoisinant ou des decharges epileptiques etaient observees par ECoG pendant l'intervention. Les patients ont ete revus entre trois et six mois apres la chirurgie et annuellement par la suite. Nous avons evalue le resultat obtenu au moyen de la classification des crises convulsives de Engel ainsi que les complications pomopcYakiires.,

Résultats:

Des decharges epileptiques ont ete detectees avant et apres l'excision de la MAV chez 49 patients (81,6%). Ces patients out subi une excision de I'AMV et une electrocoagulation bipolaire du cortex ou des pointes etaient detectees. Apres l'electrocoagulation, les decharges epileptiques ont disparu chez 45 patients et ont diminue de facon evidente chez 4. Cinquante-cinq des 60 patients (91,7%) ont ete suivis pendant au moins 22 mois (moyenne 51,1 mois ; ecart de 22 a 93 mois). Selon la Engel Seizure Outcome Scale, 39 patients (70,9%) ont ete assignes a la classe I, 7 (12,7%) a la classe II, 5 (9,0%) a la classe III et 4 (7,2%) a la classe IV.

Conclusions:

Une pointe residuelle a haute frequence etait presente sur le cortex cerebral avoisinant, meme apres l'excision complete de la MAV, du tissu glial et du tissu avoisinant teinte d'hemosiderine. Un controle chirurgical efficace des crises peut etre obtenu en effectuant une electrocoagulation bipolaire guidee par 1'ECoG sur le cortex pendant 1'intervention.

Type
Original Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

Footnotes

*

These authors contributed equally to this work.

References

1. Perret, G, Nishioka, H. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage, section VI: arteriovenous malformations: an analysis of 545 cases of craniocerebral arteriovenous malformations and fistulae reported to the cooperative study. J Neurosurg. 1966;25:46790.Google Scholar
2. Moody, RA, Poppen, JL. Arteriovenous malformations. J Neurosurg. 1970;32:50311.Google Scholar
3. Murphy, MJ. Long-term follow-up of seizures associated with cerebral arteriovenous malformations, results of therapy. Arch Neurol. 1985;42:4779.Google Scholar
4. Crawford, PM, West, CR, Shaw MDM, Chadwick, DW. Cerebral arteriovenous malformations and epilepsy: factors in the development of epilepsy. Epilepsia. 1986;27:2705.Google Scholar
5. Forster, DMC, Steiner, L, Hakinson, S. Arteriovenous malformations of the brain. A long-term clinical study. J Neurosurg. 1972;37: 562-70.Google Scholar
6. Parkinson, D, Bachers, G. Arteriovenous malformations, summary of 100 consecutive supratentorial cases. J Neurosurg. 1980;53: 285-99.Google Scholar
7. Foy, PM, Copeland, GP, Shaw MDM. The incidence of post-operative seizures. Acta Neurochir. 1981;55:25364.Google Scholar
8. Piepgras, DG, Sundt, TM, Ragoowansi, AT, Stevens, L. Seizure outcome in patients with surgically treated cerebral arteriovenous malformations. J Neurosurg. 1993;78:511.Google Scholar
9. Yeh, H, Tew, JM, Gartner, M. Seizure control after surgery on cerebral arteriovenous malformations. J Neurosurg. 1993;78: 12-8.Google Scholar
10. Gertzen, PC, Adelson, PD, Kondziolka, D, Flickinger, JC, Lunsford, LD. Seizure outcome in children treated for arteriovenous malformations using gamma knife radiosurgery. Pediatr Neurosurg. 1996;24:13944.Google Scholar
11. Falkson, CB, Chakrabarti, KB, Doughty, D, Plowman, PN. Stereotactic multiple arc radiotherapy. III-influence of treatment of arteriovenous malformations on associated epilepsy. Br J Neurosurg. 1997;11:125.Google Scholar
12. Luan, G, Sun, Z, Bai, Q, Wang, Z. Surgical treatment of intractable epilepsy combined with bipolar electrocoagulation on functional cortex. Stereotact Funct Neurosurg. 2001;77:2338.Google Scholar
13. Baker, GA, Camfield, C, Camfield, P. et al. ILAE commission report, commission on outcome measurements in epilepsy, 1994—1997: final report. Epilepsia. 1998;39:21331.Google Scholar
14. Hoh, BL, Chapman, PH, Loeffler, JS, Carter, BS, Ogilvy, CS. Results of multimodality treatment for 141 patients with brain arteriovenous malformations and seizures: factors associated with seizure incidence and seizure outcomes. Neurosurgery. 2002;51:3039.Google Scholar
15. Lunsford, LD, Kondziolka, D, Flickinger, JC. et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg. 1991;75:51224.CrossRefGoogle ScholarPubMed
16. Svien, HJ, McRae, JA. Arteriovenous anomalies of the brain. Fate of patients not having definitive surgery. J Neurosurg. 1965;23: 23-8.Google Scholar
17. Parkinson, D, Bachers, G. Arteriovenous malformations. Summary of 100 consecutive supratentorial cases. J Neurosurg. 1980;53:28599.Google Scholar
18. Dodick, DW, Cascino, GD, Meyer, FB. Vascular malformations and intractable epilepsy: outcome after surgical treatment. Mayo Clin Proc. 1994;69:7415.Google Scholar
19. Yeh, H, Privitera, MD. Secondary epileptogenesis in cerebral arteriovenous malformations. Arch Neurol. 1991;1122-4.Google Scholar
20. Kraemcr, D, Awad, IA. Vascular malformations and epilepsy: clinical considerations and basic mechanisms. Epilepsia. 1994; 35 Suppl 6:S30-43.Google Scholar
21. Lv, X, Li, Y, Jiiang, C, Yang, X, Wu, Z. Brain arteriovenous malformations and endovascular treatment: effect on seizures. Interv Neuroradiol. 2010;16(1):3945.Google Scholar
22. Hammen, T, Romstöck, J, Dorfler, A, Kerling, F, Buchfelder, M, Stefan, H. Prediction of postoperative outcome with special respect to removal of hemosiderin fringe: a study in patients with cavernous h Hemangiomas associated with symptomatic epilepsy. Seizure. 2007; 16(3):248-53.Google Scholar
23. Upchurch, K, Stern, JM, Salamon, N. et al. Epileptogenic temporal cavernous malformations: operative strategies and postoperative seizure outcomes. Seizure. 2010; 19(2): 120-8.Google Scholar
24. Cosgrove, GR. Occult vascular malformations and seizures. Neurosurg Clin N Am. 1999;10(3):52735.Google Scholar
25. Yeh, HS, Kashiwagi, S, Tew, JM Jr, Merger, TS. Surgical management of epilepsy associated wilh cerebral arteriovenous malformations. J Neurosurg. 1990;72:21623.Google Scholar
26. Morrell, F, Whisler, WW, Bleck, TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989;70:2319.Google Scholar
27. Liu, Z, Zhao, Q. The surgical technique research of multiple subpial transection for seizures with extensive foci in cortexes. Chin J Neurosurg. 1997;13:1569.Google Scholar
28. Smith, MC. Multiple subpial transection in patients with extra-temporal epilepsy. Epilepsia. 1998;39 Suppl 4:S81-9.Google Scholar
29. Yang, Z, Luan, G. Treatment of symptomatic epilepsy with lesionectomies combined with bipolar coagulation of the surrounding cortex. Chin Med J. 2003;116(12):19302.Google Scholar
30. Meng, H, Luan, G. The experimental surgical technique research of cats' sensorimotor area cortex epileptogenic focus induced by penicillin, part one: observation of electrophysiology and behavior. Chin J Stereotact Funct Neurosurg. 1999;12:16.Google Scholar
31. Luan, G, Zhang, W, Yan, L, Wang, Z. A pilot study of bipolar coagulation technique for treatment of epilepsy. Chin J Neurosurg. 1999;15:32932.Google Scholar