Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T22:13:00.452Z Has data issue: false hasContentIssue false

Analgesic Effects of Vibration and Transcutaneous Electrical Nerve Stimulation Applied Separately and Simultaneously to Patients with Chronic Pain

Published online by Cambridge University Press:  18 September 2015

Régis Guieu
Affiliation:
Laboratoire de Neurobiologie Humaine, Université de Provence, Marseille, France
Marie-Françoise Tardy-Gervet*
Affiliation:
Laboratoire de Neurobiologie Humaine, Université de Provence, Marseille, France
Jean-Pierre Roll
Affiliation:
Laboratoire de Neurobiologie Humaine, Université de Provence, Marseille, France
*
Laboratoire de Neurobiologie Humaine - Université de Provence - URA CNRS 372 - Avenue Escadrille Normandie Niemen - 13397 Marseille Cedex 13 - France
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The analgesic effects of transcutaneous electrical nerve stimulation (TENS) and vibratory stimulation (VS), used both separately and simultaneously, were compared in 24 patients suffering from chronic pain. We tested the hypothesis that these combined procedures might improve the pain reducing effects obtained with a single type of stimulation, since they make it possible to recruit a larger number of large diameter afferents and/or to increase the discharge frequencies. Four 35-minute treatment sessions (VS, TENS, VS+TENS, Sham stimulation) were run with each patient. The vibrations (100 Hz) and TENS (100 Hz) were applied to the surface of the painful region. The sham stimulation treatment consisted of positioning the TENS electrodes without actually delivering any current. The short form of the McGill pain questionnaire was used to assess the subjects' pain levels. The assessments took place immediately after any treatment (Oh.), and again 4 hours and 24 hours later. The results showed that dual stimulation not only alleviated pain in more cases than either VS or TENS alone, but also had stronger and more long-lasting analgesic effects. On the other hand, all three types of stimulation used produced stronger analgesic effects than those obtained with the sham stimulation.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

1.Melzack, R, Wall, PD. Pain mechanism: a new theory. Science 1965; 150:971978.CrossRefGoogle ScholarPubMed
2.Andersson, SA. Pain control by sensory stimulation. In: Bonica, JJ, Liebeskind, JC, Albe-Fessard, DG, eds. Advances in Pain Research and Therapy. New York: Raven Press 1979; 3: 569585.Google Scholar
3.Boureau, F, Wilier, JC. La douleur, exploration, traitement par neurostimulation et filectroacupuncture. Paris: Masson, eds. 1979; 119 p.Google Scholar
4.Mannheimer, JS, Lampe, GN. Clinical transcutaneous electrical nerve stimulation. Philadelphia: Davis Company, ed. 1984; 636 p.Google Scholar
5.Meyerson, BA. Electrostimulation procedures: effects, presumed rationale, and possible mechanisms. In: Bonica, JJ, Liebeskind, JC, Albe-Fessard, DG, eds. Advances in Pain Research and Therapy. New York: Raven Press 1983; 5: 495534.Google Scholar
6.Ekblom, A, Hansson, PT. Effects of conditioning vibratory stimulation on pain threshold of the human tooth. Acta Physiol Scand 1982; 114:601604.CrossRefGoogle ScholarPubMed
7.Ekblom, A, Hansson, PT. Extra segmental transcutaneous electrical nerve stimulation and mechanical vibratory stimulation as compared to placebo for the relief of acute orofacial pain. Pain 1985; 23: 223229.CrossRefGoogle Scholar
8.Hansson, P, Ekblom, A. Afferent stimulation-induced pain relief in acute orofacial pain and its failure to induce sufficient pain reduction in dental and oral surgery. Pain 1984; 20: 273278.CrossRefGoogle ScholarPubMed
9.Lundeberg, T, Nordemar, R, Ottosson, D. Pain alleviation by vibratory stimulation. Pain 1984; 20: 2544.CrossRefGoogle ScholarPubMed
10.Ottosson, D, Ekblom, A, Hansson, P. Vibratory stimulation for the relief of pain of dental origin. Pain 1981; 10:745.CrossRefGoogle Scholar
11.Lundeberg, T. Vibratory stimulation for the alleviation of chronic pain. Acta Physiol Scand 1983; 523: 151 (Suppl).Google ScholarPubMed
12.Lundeberg, T. The pain-suppressive effect of vibratory stimulation and transcutaneous electrical nerve stimulation (TENS) as compared to aspirin. Brain Res 1984; 294: 201209.CrossRefGoogle ScholarPubMed
13.Lundeberg, T. Long-term results of vibratory stimulation as a pain relieving measure for chronic pain. Pain 1984; 20: 1323.CrossRefGoogle ScholarPubMed
14.Lundeberg, T, Ottoson, D, Hakansson, , et al. Vibratory stimulation for the control of intractable chronic orofacial pain. In: Bonica, JJ, Lindblom, V, Iggo, A, eds. Advances in Pain Research and Therapy. New York: Raven Press 1983; 5: 555561.Google Scholar
15.Bellini, F, Duranti, R, Galletti, R, et al. Variations in muscular pain threshold and eyeblink response induced by vibratory stimulation. In: Bromm, B, eds. Pain Measurement in Man. Neurophysiological Correlates of Pain. Amsterdam: Elsevier, 1984; 135141.Google Scholar
16.Duranti, R, Pantaleo, T, Bellini, F. Increase in muscular pain threshold following low frequency-high intensity peripheral conditioning stimulation in humans. Brain Res 1988; 452: 6672.CrossRefGoogle ScholarPubMed
17.Lundeberg, T, Abrahamsson, P, Bondesson, L, et al. Effect of vibratory stimulation on experimental and clinical pain. Scand J Rehab Med 1988; 20: 149159.Google ScholarPubMed
18.Pantaleo, T, Duranti, R, Bellini, F. Effects of vibratory stimulation on muscular pain threshold and blink response in human subjects. Pain 1986;24:239250.CrossRefGoogle ScholarPubMed
19.Pertovaara, A. Modification of human pain threshold by specific tactile receptors. Acta Physiol Scand 1979; 107: 339341.CrossRefGoogle ScholarPubMed
20.Sherer, CL, Clelland, JA, O’Sullivan, P, et al. The effect of high frequency vibration on cutaneous pain threshold. Pain 1986; 25: 133138.CrossRefGoogle ScholarPubMed
21.Wall, PD, Cronly-Dillon, SA. Pain, itch, and vibration. Arch Neurol 1960; 2: 365375.CrossRefGoogle ScholarPubMed
22.Johansson, RS, Vallbo, AB. Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci 1983; 6: 2732.CrossRefGoogle Scholar
23.Konietzny, F, Hensel, H. Response of rapidly and slowly adaptating mechanoreceptors and vibratory sensitivity in human hair skin. Pflügers Arch 1977; 368: 3944.CrossRefGoogle Scholar
24.Lundstöm, R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to vibration. Scand J Work Environ Health 1986; 125:413416.CrossRefGoogle Scholar
25.Lundstom, R, Johansson, RS. Acute impairment of the sensitivity of the skin mechanoreceptive units caused by vibration exposure of the hand. Ergonomics 1986; 29: 687698.CrossRefGoogle Scholar
26.Ribot-Ciscar, E, Vedel, JP, Roll, JP. Vibration sensitivity of slowly and rapidly adaptating cutaneous mechanoreceptors in the human foot and leg. Neurosci Lett 1989; 104: 130135.CrossRefGoogle Scholar
27.Vedel, JP, Roll, JP. Response to pressure and vibration of slowlyadaptating cutaneous mechanoreceptors in the human foot. Neurosci Lett 1982; 34: 289294.CrossRefGoogle ScholarPubMed
28.Willis, WD, Coggeshall, RE. Sensory mechanisms of the spinal cord. New York: Plenum Press, eds. 1978; 485 p.CrossRefGoogle Scholar
29.Burke, D, Hagbarth, KE, Lofstedt, L, et al. The response of human muscle spindle endings to vibration of non contracting muscles. J Physio 1976;261:673693.CrossRefGoogle ScholarPubMed
30.Burke, D, Hagbarth, KE, Lofstedt, L, et al. The response of human muscle spindle endings to vibration during isometric contraction. J Physiol 1976;261:695711.CrossRefGoogle ScholarPubMed
31.Roll, JP, Vedel, JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 1982; 47: 177190.CrossRefGoogle ScholarPubMed
32.Roll, JP, Vedel, JP, Ribot, E. Alteration of proprioceptive messages induced by tendon vibration in man: a micro-neurographic study. Exp Brain Res 1989; 76: 213222.CrossRefGoogle Scholar
33.Vedel, JP, Roll, JP. Muscle spindle contribution to the coding of motor activities in man. In: Massion, J, Paillard, J, Schultz, W, et al., eds. Neural Coding of Motor Performance. Exp Brain Res 1983; 7: 253265 (Suppl).CrossRefGoogle Scholar
34.Eklund, G. Position sense and state of contraction; the effects of vibration. J Neurol Neurosurg Psychiatry 1972; 35: 606611.CrossRefGoogle Scholar
35.Goodwin, GM, McCloskey, DI, Matthews, PBC. The contribution of muscle afferents to kinesthaesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 1972;95:705748.CrossRefGoogle ScholarPubMed
36.Roll, JP, Gilhodes, JC, Tardy-Gervet, MF. Effets perceptifs et moteurs des vibrations musculaires chez l’homme normal: mise en évidence d’une réponse dans les muscles antagonistes. Arch ItalBiol 1980; 118:5171.Google Scholar
37.Guieu, R, Tardy-Gervet, MF, Roll, JP. Effets antalgiques des vibrations mécaniques associées à des stimulations é1ectriques transcutanées. In: INRS eds. Proceedings of United Kingdom and French joint meeting on Human Response to Vibration. Vandoeuvre- les-Nancy: INRS Press 1988; 230239.Google Scholar
38.Guieu, R, Tardy-Gervet, MF, Roll, JP. Vibrations applied simultaneously with transcutaneous electrical nerve stimulation as means of treating chronic pain. Eur J Neurosci 1989; 2: 170 (Suppl).Google Scholar
39.Melzack, R. The short-form McGill pain questionnaire. Pain 1987; 30: 191197.CrossRefGoogle ScholarPubMed
40.Guieu, R, Tardy-Gervet, MF, Blin, O, et al. Pain relief achieved by transcutaneous electrical nerve stimulation and or vibratory stimulation in a case of painful legs and moving toes. Pain 1990; 42: 4348.CrossRefGoogle ScholarPubMed
41.Besson, JM, Chaouch, A. Peripheral and spinal mechanisms of nociception. Physiol Rev 1987; 67: 67186.CrossRefGoogle ScholarPubMed
42.Besson, JM, Guilbaud, G, Abdelmounene, M, et al. Physiologie de la nociception. Paris: J Physiol 1982; 78: 7107.Google Scholar
43.Melzack, R, Wall, PD. Le défi de la douleur, 3° édition (English translation of: “Challenge of pain”). Montmagny: Edisem 1989; 290 p.Google Scholar
44.Abram, SE, Reynolds, AC, Cusick, JF. Failure to naloxone to reverse analgesia from transcutaneous electrical stimulation in patients with chronic pain. Anesth Analg 1981; 60: 8184.CrossRefGoogle ScholarPubMed
45.Guieu, R, Dano, P, Tardy-Gervet, MF, et al. Effets de la Naloxone sur l’antagie induite par les stimulations vibratoires. Press Méd 1989; 24: 1207.Google Scholar
46.Hansson, P, Ekblom, A. Influence of naloxone on relief of acute orofacial pain by transcutaneous electrical nerve stimulation or vibration. Pain 1986; 24: 323329.CrossRefGoogle ScholarPubMed
47.Lundeberg, T. Nalaxone does not reverse the pain-reducing effect of vibratory stimulation. Acta Anesthesiol Scand 1985; 29: 212216.CrossRefGoogle Scholar
48.Sjölung, BH, Eriksson, MBE. The influence of naloxone on analgesia produced by peripheral conditioning stimulation. Brain Res 1979; 173:295301.CrossRefGoogle Scholar
49.Cesselin, F. Endorphines et nociception. Rev Neurol 1986; 142: 649670.Google ScholarPubMed
50.Millan, MJ. Multiple opioïd systems and pain. Pain 1986; 27: 303347.CrossRefGoogle ScholarPubMed
51.Gillman, MA, Lichtigfeld, FJ. A pharmacological overview of opioid mechanisms and mediating analgesia and hyperalgesia. Neurological Research 1985; 7: 1051109.CrossRefGoogle ScholarPubMed
52.Levine, JD, Gordon, NC, Fields, HL. Naloxone dose dependency produces analgesia and hyperalgesia in postoperative pain. Nature 1979; 278: 740741.CrossRefGoogle ScholarPubMed
53.Abram, SE, Asiddao, CB, Reynolds, AC. Increased skin temperature during transcutaneous electrical stimulation. Anesth Analg 1980; 59: 2225.CrossRefGoogle ScholarPubMed
54.Kjartansson, J, Lundeberg, T, Korlof, B. Transcutaneous electrical nerve stimulation (TENS) in ischemic tissue. Plast Reconstr Surg 1988;81:813814.Google ScholarPubMed
55.Hyvärinen, J, Pykkö, J, Sunberg, S. Vibration frequencies and amplitudes in the aetiology of traumatic vasospastic disease. Lancet 1973; 14:791793.CrossRefGoogle Scholar
56.Skoglund, CR. Vasodilation in human skin induced by low amplitude high frequency vibration. Clin Physiol 1989; 9: 361369.CrossRefGoogle ScholarPubMed