Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T06:24:56.065Z Has data issue: false hasContentIssue false

Advances in Experimental and Clinical Studies of Chemotaxis

Published online by Cambridge University Press:  23 September 2014

Aikeremujiang Muheremu
Affiliation:
Institute Of Orthopaedics, Chinese PLA General Hospital, Fifth Affiliated Hospital of Xinjiang Medical University, Beijing, China
Yu Wang
Affiliation:
Institute Of Orthopaedics, Chinese PLA General Hospital, Fifth Affiliated Hospital of Xinjiang Medical University, Beijing, China
Jiang Peng*
Affiliation:
Institute Of Orthopaedics, Chinese PLA General Hospital, Fifth Affiliated Hospital of Xinjiang Medical University, Beijing, China
*
Institute of Orthopaedics, Chinese PLA General Hospital, NO28, Fuxing Rd, Haidian district, Beijing, China. Postal Code: 0086- 100853. Email: pengjdxx@126.com.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.

Résumé:

Résumé:

La théorie de la chimiotaxie est couramment acceptée, mais ses mécanismes demeurent controversés. La croissance chimiotaxique des nerfs périphériques pourrait être spécifique selon les tissus, la topographie et l'organe-cible. des études récentes indiquent une absence de spécificité topographique dans la régénérescence des nerfs périphériques. Cependant la spécificité concernant les organes-cibles demeure controversée. La chimiotaxie dans la régénérescence nerveuse est influencée par la distance entre les extrémités du nerf, le volume et le support neurotrope ainsi que la structure des extrémités nerveuses distales. La chimiotaxie peut être utilisée pour réaliser une réparation précise de nerfs et pour obtenir une récupération de la fonction de l'organe-cible. Une technique de relais par manchon de petits écarts basée sur cette théorie a semblé avoir des effets prometteurs, mais trouver la combinaison parfaite de conduits nerveux, de facteurs cellulaires et neurotropes pour optimiser son utilisation constitue encore un défi. dans cet article, nous faisons un examen approfondi des mécanismes de la chimiotaxie, des facteurs qui l'influencent et de ses applications.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Belkas, JS, Shoichet, MS, Midha, R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.CrossRefGoogle ScholarPubMed
2. Taylor, CA, Braza, D, Rice, JB, Dillingham, T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–5.CrossRefGoogle ScholarPubMed
3. Whitlock, EL, Tuffaha, SH, Luciano, JP, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6): 787–99.CrossRefGoogle ScholarPubMed
4. Eser, F, Aktekin, LA, Bodur, H, Cigdem, A. Etiological factors of traumatic peripheral nerve injuries. Neurol India. 2009;57: 434–7.CrossRefGoogle ScholarPubMed
5. Shieh, SJ, Lee, JW, Chiu, HY. Long-term functional results of primary reconstruction of severe forearm injuries. J Plast Reconstr Aesthet Surg 2007;60:339–48.CrossRefGoogle ScholarPubMed
6. Herscovici, D Jr., Fiennes, AG, Allgower, M, Ruedi, TP. The floating shoulder: ipsilateral clavicle and scapular neck fractures. J Bone Joint Surg BR. 1992;74(3):362–4.CrossRefGoogle ScholarPubMed
7. Goss, TP. Double disruptions of the superior shoulder suspensory complex. J Orthop Trauma. 1993;7(2):99106.CrossRefGoogle ScholarPubMed
8. Cajal, RS. Degeneration and Regeneration of the Nervous System, Oxford University Press. 1928.Google Scholar
9. Weiss, P, Taylor, AC, 1944, Further experimental evidence against neurotropism in nerve regeneration. J exp Zool. 1944;95: 233–57.CrossRefGoogle Scholar
10. Lundborg, G, Dahlin, LB, Danielsen, N, Nachemson, AK. Tissue specificity in nerve regeneration. Scand J Plast Reconstr Surg. 1986;20(3):279–83.Google ScholarPubMed
11. Politis, MJ. Specificity in mammalian peripheral nerve regeneration at the level of the nerve trunk. Brain Res. 1985;328(2):271–6.CrossRefGoogle ScholarPubMed
12. Lee, JM, Tos, P, Raimondo, S, Fornaro, M, Papalia, I, Geuna, S. Lack of topographic specificity in nerve fiber regeneration of rat forelimb mixed nerves. J Neurosci. 2007;144(3):985–90.CrossRefGoogle ScholarPubMed
13. Brushart, TM, Gerber, J, Kessens, P, Chen, YG, Royall, RM. Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci. 1998;18(21):8674–81.CrossRefGoogle ScholarPubMed
14. Maki, Y, Yoshizu, T, Tsubokawa, N. Selective regeneration of motor and sensory axons in an experimental peripheral nerve model without endorgans. Scand J Plast Reconstr Surg Hand Surg. 2005;39(5):257–60.CrossRefGoogle Scholar
15. Hari, A, Djohar, B, Skutella, T. Neurotrophins and extracellular matrix molecules modulate sensory axon outgrowth. Int J Dev Neurosci. 2004;22(2):113–7.CrossRefGoogle ScholarPubMed
16. Hoke, A, Redett, R, Hameed, H, et al. schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci. 2006;26(38):9646–55.CrossRefGoogle ScholarPubMed
17. Lundborg, G, Dahlin, LB, Danielsen, N, et al. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol. 1982;76(2):361–75.CrossRefGoogle ScholarPubMed
18. Politis, MJ, Ederle, K, Spencer, PS. Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves. Brain Res. 1982;235(1-2):112.CrossRefGoogle Scholar
19. Zhang, W, Ochi, M, Takata, H, Icuta, Y. Influence of distal nerve segment volume on nerve regeneration in silicone tubes. Exp Neurol. 1997;146(2): 600–3.CrossRefGoogle ScholarPubMed
20. Takahashi, Y, Maki, Y, Yoshizu, T, Tajima, T. Both stump area and volume of distal sensory nerve segments influence the regeneration of sensory axons in rats. Scand J Plast Reconstr Surg Hand Surg. 1999;33(2):177–80.Google ScholarPubMed
21. Madison, RD, Robinson, GA, Chadaram, SR. The specificity of motor neurone regeneration (preferential reinnervation). Acta physiologica (Oxford, England). 2007;189(2):201–6.CrossRefGoogle ScholarPubMed
22. Robinson, GA, Madison, Rd. Influence of terminal nerve branch size on motor neuron regeneration accuracy. Exp Neurol. 2009; 215(2):228–35.CrossRefGoogle ScholarPubMed
23. Moradzadeh, A, Borschel, GH, Luciano, JP, et al. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212(2):370–6.CrossRefGoogle ScholarPubMed
24. Gravvanis, AI, Tsoutsos, DA, Tagaris, GA, et al. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts: an experimental study. Microsurg. 2004; 24(5):408–15.CrossRefGoogle ScholarPubMed
25. Zhang, J, Lineaweaver, WC, Oswald, T, Chen, Z, Chen, Z, Zhang, F. Ciliary neurotrophic factor for acceleration of peripheral nerve regeneration: an experimental study. J Reconstr Microsurg. 2004;20(4):323–7.CrossRefGoogle ScholarPubMed
26. Lykissas, MG, Batistatou, AK, Charalabopoulos, KA, Beris, AE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovas Res. 2007;4(2):143–51.CrossRefGoogle ScholarPubMed
27. Emel, E, Ergun, SS, Kotan, D, et al. Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J Neurosurg. 2011;114(2):522–8.CrossRefGoogle ScholarPubMed
28. Utley, DS, Lewin, SL, Cheng, ET, Verity, AN, Sierra, D, Terris, DJ. Brain-derived neurotrophic factor and collagen tubulization enhance functional recovery after peripheral nerve transection and repair. Arch Otolaryngol Head Neck surg. 1996;122(4): 407–13.CrossRefGoogle ScholarPubMed
29. Scholz, T, Rogers, JM, Krichevsky, A, Dhar, S, Evans, GR. Inducible nerve growth factor delivery for peripheral nerve regeneration in vivo. Plast Reconstr Surg. 2010;126(6):1874–89.CrossRefGoogle ScholarPubMed
30. Chiu, DT, Smahel, J, Chen, L, Meyer, V. Neurotropism revisited. Neurol Res. 2004;26(4):381–7.CrossRefGoogle ScholarPubMed
31. Jian, Li, Jiang, B, Zhang, D. Using biological tube for bridging the peripheral nerve defect with a small gap: an experimental study. Chn J Hand Surg. 2003;19:118–20.Google Scholar
32. Pfister, LA, Papaloizos, M, Merkle, HP, Gander, B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst. 2007;12(2):6582.CrossRefGoogle ScholarPubMed
33. Zhao, FQ, Zhang, PX, Jiang, BG. Magnifying effect of conduit bridging in number of nerve fibers of broken peripheral nerves: experiment with rats. Zhonghua Yi Xue Za Zhi. 2007 Apr 17;87 (15):1043–7.Google ScholarPubMed
34. Jiang, B, Zhang, P, Zhang, D, Fu, Z, Yin, X, Zhang, H. Study on small gap sleeve bridging peripheral nerve injury. Artif Cells Blood Substit Immobil Biotechnol. 2006;34(1):5574.CrossRefGoogle Scholar
35. Zhang, Y, Luo, H, Zhang, Z, et al. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adiposederived mesenchymal stem cells. Biomaterials. 2010;31(20): 5312–24.CrossRefGoogle Scholar
36. Nakamura, T, Inada, Y, Fukuda, S, et al. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res. 2004;1027(1-2): 1829.CrossRefGoogle Scholar
37. Weber, RA, Breidenbach, WC, Brown, RE, Jabaley, ME, Mass, DP. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg. 2000;106(5):1036–45.CrossRefGoogle ScholarPubMed
38. Taras, JS, Nanavati, V, Steelman, P, Nerve conduits. J Hand Ther. 2005; 18(2): 191–7.CrossRefGoogle ScholarPubMed
39. Lohmeyer, JA, Siemers, F, Machens, HG. The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg. 2009;25(1): 5561.CrossRefGoogle ScholarPubMed
40. Meek, MF, Coert, GH. US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg. 2008;60(4): 466–72.CrossRefGoogle ScholarPubMed
41. Xu, H, Yan, Y, Li, S. PdLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials. 2011; 32(20):4506–16.CrossRefGoogle ScholarPubMed
42. Bozkurt, A, Deumens, R, Beckmann, C, et al. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009; 30(2):169–79.CrossRefGoogle ScholarPubMed
43. Williams, LR, Powell, HC, Lundborg, G, Varon, S. Competence of nerve tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain Res. 1984;293(2):201–11.CrossRefGoogle Scholar
44. Whitworth, IH, Brown, RA, Dore, C, Green, CJ, Terenghi, G. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg (Br). 1995;20(4):429–36.CrossRefGoogle ScholarPubMed
45. Glasby, MA, Gschmeissner, SE, Huang, CL, De Souza, BA. Degenerated muscle graft used for peripheral nerve repair in primates. J Hand Surg (Br). 1986;11:347–51.CrossRefGoogle ScholarPubMed
46. Fawcett, JW, Keynes, RJ. Muscle basal lamina: a new graft material for peripheral nerve repair. J Neurosurg. 1986;65(3):354–63.CrossRefGoogle ScholarPubMed
47. Davis, GE, Engvall, E, Varon, S, Manthorpe, M. Human amnion membrane as a substratum for cultured peripheral and central nervous system neurons. Brain Res. 1987;430(1):110.Google ScholarPubMed
48. Tang, JB, Gu, YQ, Song, YS. Repair of digital nerve defect with autogenous vein graft during flexor tendon surgery in zone 2. J Hand Surg Br. 1993;18(4):449–53.CrossRefGoogle ScholarPubMed
49. Ashley, WW Jr, Weatherly, T, Park, TS. Collagen nerve guides for surgical repair of brachial plexus birth injury. J Neurosurg (6 suppl Pediatrics). 2006;(105):452–6.Google ScholarPubMed
50. Kiyotani, T, Teramachi, M, Takimoto, Y, Nakamura, T, Shimizu, Y, Endo, K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electro-physiological evaluation of regenerated nerve. Brain Res. 1996; 740:6674.CrossRefGoogle Scholar
51. Brown, RE, Erdmann, D, Lyons, SF, Suchy, H. The use of cultured Schwann cells in nerve repair in a rabbit hind-limb model. J Reconstr Microsurg. 1996;12(3):149–52.CrossRefGoogle Scholar
52. Wei, G, Zhu, K. Advances of peripheral nerve regeneration using nerve guidance channel. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001 dec;18(4):653–7. (Chinese journal of biomedical engineering)Google Scholar
53. Ayhan, S, Yavuzer, R, Latifoglu, O, Atabay, K. Use of the turnover epineurial sheath tube for repair of peripheral nerve gaps. J Reconstr Microsurg. 2000;16(5):371–8.CrossRefGoogle ScholarPubMed
54. Karacaoglu, E, Yuksel, F, Peker, F, Guler, MM. Nerve regeneration through an epineurial sheath: Its functional aspect compared with nerve and vein grafts. Microsurg. 2001;21(5):196201.CrossRefGoogle ScholarPubMed
55. Yuksel, F, Ulkur, E, Baloglu, H, Celikoz, B. Nerve regeneration through a healthy peripheral nerve trunk as a nerve conduit: a preliminary study of a new concept in peripheral nerve surgery. Microsurg. 2002;22(4):138–43.CrossRefGoogle ScholarPubMed
56. Geuna, S, Tos, P, Battiston, B, Giacobini-Robecchi, MG. Bridging peripheral nerve defects with muscle-vein combined guides. Neurol Res. 2004;26(2):139–44.CrossRefGoogle ScholarPubMed
57. Varejao, AS, Cabrita, AM, Meek, MF, Fornaro, M, Geuna, S. Nerve regeneration inside fresh skeletal muscle-enriched synthetic tubes: A laser confocal microscope study in the rat sciatic nerve model. Ital J Anat Embryol. 2003;108(2):7782.Google ScholarPubMed
58. Jiang, B, Wang, S, Feng, CH. The comparison of small gap autogenic artery and epineurium anastomosis bridging peripheral nerve. Journal of Beijing Medical University. 1994;26:249–50.Google Scholar
59. Barcelos, AS, Rodrigues, AC, Silva, MDP, Padovani, CR. Inside-out vein graft and inside-out artery graft in rat sciatic nerve repair. Microsurg. 2003;23(1):6671.CrossRefGoogle ScholarPubMed
60. Hall, S. The response to injury in the peripheral nervous system. J Bone Joint Surg Br. 2005;87(10):1309–19.CrossRefGoogle ScholarPubMed
61. Mirsky, R, Jessen, KR. Schwann cell development, differentiation and myelination. Curr Opin Neurobiol. 1996;6(1):8996.CrossRefGoogle ScholarPubMed
62. Siemionow, M, Duggan, W, Brzezicki, G, et al. Peripheral nerve defect repair with epineural tubes supported with bone marrow stromal cells: a preliminary report. Ann Plast Surg. 2011;67(1): 7384.CrossRefGoogle ScholarPubMed
63. Lin, YC, Ramadan, M, Hronik-Tupaj, M et al. Spatially controlled delivery of neurotrophic factors in silk fibroin-based nerve conduits for peripheral nerve repair. Ann Plast Surg. 2011;67(2): 147–55.CrossRefGoogle ScholarPubMed
64. Di Summa, PG, Kalbermatten, DF, Pralong, E, Raffoul, W, Kingham, PJ, Terenghi, G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neurosci. 2011;181: 278–91.CrossRefGoogle ScholarPubMed
65. Zhao, FQ, Zhang, PX, HE, XJ, et al. Study on the adoption of Schwann cell phenotype by bone marrow stromal cells in vitro and in vivo. Biomed Environ Sci. 2005;18(5):326–33.Google Scholar
66. Zhang, P, He, X, Zhao, F, Zhang, D, Fu, Z, Jiang, B. Bridging small-gap peripheral nerve defects using biodegradable chitin conduits with cultured schwann and bone marrow stromal cells in rats. J Reconstr Microsurg. 2005;21(8):565–71.CrossRefGoogle ScholarPubMed
67. Matsuse, D, Kitada, M, Kohama, M, et al. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol. 2010;69(9):973–85.CrossRefGoogle ScholarPubMed