Skip to main content Accessibility help

On Annelidan, Distributive, and Bézout Rings


A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.



Hide All

The second author was supported by Polish KBN Grant 1 P03A 032 27. Parts of this paper were written while the first author was visiting the Bialystok University of Technology; other parts were written while the second author was visiting St. Louis University. Each is deeply grateful for the warm hospitality extended by both institutions.



Hide All
[1]Auslander, M., Green, E. L., and Reiten, I., Modules with waists. Illinois J. Math. 19(1975), 467478.
[2]Badawi, A., Pseudo-valuation domains: a survey. In: Mathematics & mathematics education (Bethlehem, 2000). World Sci. Publ., River Edge, NJ, 2002, pp. 3859.
[3]Bell, J., Rogalski, D., and Sierra, S. J., The Dixmier-Moeglin equivalence for twisted homogeneous coordinate rings. Israel J. Math. 180(2010), 461507.
[4]Bessenrodt, C., Brungs, H.-H., and Törner, G., Prime ideals in right chain rings. Mitt. Math. Sem. Giessen(1984), no. 163, 141167.
[5]Bessenrodt, C., Brungs, H. H., and Törner, G., Right chain rings, part 1. Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, 1990, vol. 181.
[6]Bourbaki, N., Elements of mathematics. Commutative algebra. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972.
[7]Brungs, H. H. and Dubrovin, N. I., A classification and examples of rank one chain domains. Trans. Amer. Math. Soc. 355(2003), no. 7, 27332753.
[8]Cohn, P. M., Free ideal rings and localization in general rings. New Mathematical Monographs, 3, Cambridge University Press, Cambridge, 2006.
[9]Dubrovin, N. I., The rational closure of group rings of left-ordered groups. translated from Mat. Sb. 184(1993), no. 7, 348. Russian Acad. Sci. Sb. Math. 79(1994), no. 2, 231–263.
[10]Ferrero, M. and Mazurek, R., On the structure of distributive and Bezout rings with waists. Forum Math. 17(2005), no. 2, 191198.
[11]Ferrero, M. and Sant’Ana, A., Rings with comparability. Canad. Math. Bull. 42(1999), no. 2, 174183.
[12]Ferrero, M. and Törner, G., On the ideal structure of right distributive rings. Comm. Algebra 21(1993), 8, 26972713.
[13]Ghashghaei, E., Koşan, M. T., Namdari, M., and Yildirim, T., Rings in which every left zero-divisor is also a right zero-divisor and conversely. J. Algebra Appl. 18(2019), no. 5, 1950096.
[14]Goel, V. K. and Jain, S. K., 𝜋-injective modules and rings whose cyclics are 𝜋-injective. Comm. Algebra 6(1978), no. 1, 5973.
[15]Goodearl, K. R., von Neumann regular rings. Second ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.
[16]Goodearl, K. R. and Warfield, R. B. Jr., An introduction to noncommutative Noetherian rings, Second ed., London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
[17]Grams, A., Atomic rings and the ascending chain condition for principal ideals. Proc. Camb. Phil. Soc. 75(1974), 321329.
[18]Hedstrom, J. R. and Houston, E. G., Pseudo-valuation domains. Pacific J. Math. 75(1978), no. 1, 137147.
[19]Hedstrom, J. R. and Houston, E. G., Pseudo-valuation domains. II. Houston J. Math. 4(1978), no. 2, 199207.
[20]Kaplansky, I., Elementary divisors and modules. Trans. Amer. Math. Soc. 66(1949), 464491.
[21]Lam, T. Y., Lectures on modules and rings. Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
[22]Lam, T. Y., A first course in noncommutative rings, Second ed., Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
[23]Lomp, C. and Sant’Ana, A., Comparability, distributivity and non-commutative 𝜙-rings. Groups, rings and group rings. Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009, pp. 205217.
[24]Marks, G., Duo rings and Ore extensions. J. Algebra 280(2004), no. 2, 463471.
[25]Marks, G. and Mazurek, R., Annelidan rings. Forum Math. 28(2016), no. 5, 923941.
[26]Marks, G. and Mazurek, R., Rings with linearly ordered right annihilators. Israel J. Math. 216(2016), no. 1, 415440.
[27]Mazurek, R., Remarks on zero-divisors in chain rings. Arch. Math. (Basel) 52(1989), no. 5, 428432.
[28]Mazurek, R., Distributive rings with Goldie dimension one. Comm. Algebra 19(1991), no. 3, 931944.
[29]Mazurek, R., Pseudo-chain rings and pseudo-uniserial modules. Comm. Algebra 33(2005), no. 5, 15191527.
[30]Mazurek, R. and Puczyłowski, E. R., On nilpotent elements of distributive rings. Comm. Algebra 18(1990), no. 2, 463471.
[31]Mazurek, R. and Törner, G., Comparizer ideals of rings. Comm. Algebra 32(2004), no. 12, 46534665.
[32]Mazurek, R. and Törner, G., On semiprime segments of rings. J. Aust. Math. Soc. 80(2006), no. 2, 263272.
[33]Puninskaya, V., Modules with few types over a serial ring and over a commutative Prüfer ring. Comm. Algebra 30(2002), no. 3, 12271240.
[34]Puninskiĭ, G. E. and Tuganbaev, A. A., . In: Izdatel’stvo “SOYuZ”. Moskovskiĭ Gosudarstvennyĭ Sotsial’nyĭ Universitet, Moscow, 1998.
[35]Redmond, S. P., The zero-divisor graph of a non-commutative ring. In: Commutative rings. Nova Sci. Publ., Hauppauge, NY, 2002, 3947.
[36]Sally, J. D. and Vasconcelos, W. V., Stable rings. J. Pure Appl. Algebra 4(1974), 319336.
[37]Schröder, M., Über N. I. Dubrovins Ansatz zur Konstruktion von nicht vollprimen Primidealen in Kettenringen. Results Math. 17(1990), no. 3–4, 296306.
[38]Shin, G., Prime ideals and sheaf representation of a pseudo symmetric ring. Trans. Amer. Math. Soc. 184(1973), 4360.
[39]Sigurđsson, G., Links between prime ideals in differential operator rings. J. Algebra 102(1986), no. 1, 260283.
[40]Small, L. W., Prime ideals in Noetherian PI-rings. Bull. Am. Math. Soc. 79(1973), 421422.
[41]Stephenson, W., Modules whose lattice of submodules is distributive. Proc. Lond. Math. Soc. (3) 28(1974), 291310.
[42]Törner, G., Left and right associated prime ideals in chain rings with d.c.c. for prime ideals. Results Math. 12(1987), no. 3–4, 428433.
[43]Tuganbaev, A. A., Distributive rings, uniserial rings of fractions, and endo-Bezout modules. J. Math. Sci. (N. Y.) 114(2003), no. 2, 11851203.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

On Annelidan, Distributive, and Bézout Rings


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.