Skip to main content Accessibility help

On a Linear Refinement of the Prékopa-Leindler Inequality

  • Andrea Colesanti (a1), Eugenia Saorín Gómez (a2) and Jesús Yepes Nicolás (a3)


If $f,\,g:\,{{\mathbb{R}}^{n}}\,\to \,{{\mathbb{R}}_{\ge 0}}$ are non-negative measurable functions, then the Prékopa–Leindler inequality asserts that the integral of the Asplund sum (provided that it is measurable) is greater than or equal to the 0-mean of the integrals of $f$ and $g$ . In this paper we prove that under the sole assumption that $f$ and $g$ have a common projection onto a hyperplane, the Prékopa–Leindler inequality admits a linear refinement. Moreover, the same inequality can be obtained when assuming that both projections (not necessarily equal as functions) have the same integral. An analogous approach may be also carried out for the so-called Borell-Brascamp-Lieb inequality.



Hide All
[1] Bonnesen, T. and Fenchel, W.,Théorie der konvexen Korper. Berichtiger reprint. Springer, Berlin,1974.
[2] Borell, C., Convex set functions in d-space. Period. Math. Hungar. 6(1975), no. 2,111136. http://dx.doi.Org/10.1007/BF02018814
[3] Brascamp, H. J. and Lieb, E. H., On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22(1976), no. 4, 366389.http://dx.doi.Org/10.1016/0022-1236(76)90004-5
[4] Colesanti, A. and Fragalá, I., The first variation of the total mass of log-concave functions and related inequalities. Adv. Math. 244(2013), 708749. http://dx.doi.Org/10.1016/j.aim.2013.05.015
[5] Danes, S. and Uhrin, B., On a class of integral inequalities and their measure-theoretic consequences. J. Math. Anal. Appl. 74(1980), no. 2, 388400. http://dx.doi.Org/10.1016/0022-247X(80)90136-5
[6] Diskant, V. I., A counterexample to an assertion of Bonnesen and Fenchel. (Russian) Ukrain.Geom. Sb. No. 27(1984), 3133.
[7] Dubuc, S., Critéres de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble) 27(1977),no.1, x, 135165.
[8] Evans, L. C. and Gariepy, R.,Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
[9] Gardner, R. J., The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39(2002), no. 3, 355405.
[10] Giannopoulos, A., Convex geometric analysis. Private Notes (Unpublished Manuscript), 2009.
[11] Gruber, P. M., Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften, 336. Springer, Berlin, 2007.
[12] Henstock, R. and Macbeath, A. M., On the measure of sum-sets. I. The theorems ofBrunn, Minkowski, and Lusternik. Proc. London Math. Soc. 3(1953), no. 3,182194.http://dx.doi.Org/10.1112/plms/s3-3.1.182
[13] Hernández Cifre, M. A. and Yepes Nicolás, J., Refinements of the Brunn-Minkowski inequality. J.Convex Anal. 21(2014), no. 3,117.
[14] Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities. Cambridge Mathematical Library, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
[15] Kawohl, B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985.
[16] Klartag, B. and Milman, V. D., Geometry of log-concave functions and measures. Geom. Dedicata 112(2005), 169182.http://dx.doi.Org/10.1007/s10711-004-2462-3
[17] Leindler, L., On certain converse of Hölder's inequality. II. Acta Math. Sci.(Szeged), 33(1972, no. 3-4,) 217223.
[18] Marsiglietti, A., On improvement of the concavity of convex measures. Proc. Amer. Math. Soc. 144(2016), no. 2, 775786.
[19] Ohmann, D., Über den Brunn-Minkowskischen Satz. Comment. Math. Helv 29(1955), 215222.
[20] Pisier, G., The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge,1989.
[21] Prékopa, A., Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged), 32(1971), 301316.
[22] Rockafellar, R. T., Convex analysis. Princeton Mathematical Series 28. Princeton University Press, Princeton, New Jersey, 1970.
[23] Rockafellar, R. T., and Wets, R. J.-B., Variational analysis. Grundlehren der Mathematischen Wissenschaften 317. Springer-Verlag, Berlin, 1998.
[24] Schneider, R., Convex bodies: the Brunn-Minkowski theory. Second edition. Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cambridge, 2014.
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

On a Linear Refinement of the Prékopa-Leindler Inequality

  • Andrea Colesanti (a1), Eugenia Saorín Gómez (a2) and Jesús Yepes Nicolás (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.