Skip to main content Accessibility help
×
Home

L'isolateur D'Un Homomorphisme de Groupes

  • C. Cassidy (a1) and P. J. Hilton (a2)

Extract

Dans ce travail, nous désignons par la catégorie des groupes localement nilpotents. Si P est un ensemble de premiers, nous disons que n est un P-nombre et nous écrivons nP si tous les facteurs premiers de n appartiennent à P; on convient toujours que 1 ∈ P. Dans tout ce qui suit, il est souvent commode de ne pas faire explicitement la distinction dans la notation entre un ensemble P de premiers et l'ensemble de tous les entiers naturels ayant tous leurs facteurs premiers dans P; par exemple, nP signifiera toujours que n est un P-nombre mais pas nécessairement un premier. L'ensemble de tous les premiers n'appartenant pas à P est désigné par P′; on convient que 1 appartient à la fois à P et à P′.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      L'isolateur D'Un Homomorphisme de Groupes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      L'isolateur D'Un Homomorphisme de Groupes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      L'isolateur D'Un Homomorphisme de Groupes
      Available formats
      ×

Copyright

References

Hide All
1. Baumslag, G., Lecture notes on nilpotent groups, A.M.S. Regional Conference Series No. 2 (1971).
2. Botto Mura, R. and Rhemtulla, A. H., Solvable groups in which every maximal partial order is isolated, Pacific J. Math. 51 (1974), 509514.
3. Botto Mura, R. and Rhemtulla, A. H., Ordered solvable groups satisfying the maximal condition on isolated subgroups and groups with finitely many relatively convex subgroups, J. Algebr. 36 (1975), 3845.
4. Freyd, P. J., and Kelly, G. M., Categories of continuous functors I, J. Pure and Applied Alg. 2 (1972), 169191.
5. Fuchs, L., Partially ordered algebraic systems, (Pergamon Press, New York, 1963).
6. Hall, P., Edmonton notes on nilpotent groups, Queen Mary College Math. Notes (1969).
7. Hilton, P. J., Localization and cohomology of nilpotent groups, Math. Z. 132 (1973), 263286.
8. Hilton, P. J., On direct limits of nilpotent groups, Lecture Notes in Math. 418, Springer (1974), 6877.
9. Hilton, P. J., Mislin, G. and Roitberg, J., Localization theory for nilpotent groups and spaces (Notas de Mathematica, North Holland, 1975).
10. Hilton, P. J. and Stammbach, U., On group actions on groups and associated series, Math. Proc. Camb. Phil. Soc. 80 (1976), 4355.
11. Hilton, P. J. and Stammbach, U., Qn localization and isolators, Houston J. Math. 2 (1976), 195206.
12. Malcev, A. I., Sur une classe d'espaces homogènes, Isvestia Akad. Nauk SSSR, Ser. Math. 13 (1949), 932 (en russe).
13. Meisen, J., On bicategories of relations and pullback spans, Comm. in Alg. 1 (1975), 377401.
14. Plotkin, B. I., Sur la théorie des groupes non-abéliens sans torsion, Mat. Sb. 30 (1952), 197212 (en russe).
15. Stammbach, U., Homology in group theory (Lecture Notes in Math. 359, Springer, 1973).
16. Warfield, R. B., Nilpotent groups (Lecture Notes in Math. 513, Springer, 1976).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

L'isolateur D'Un Homomorphisme de Groupes

  • C. Cassidy (a1) and P. J. Hilton (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed