Skip to main content Accessibility help
×
Home

Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups

  • Matthew Daws (a1)

Abstract

We show that the assignment of the (left) completely bounded multiplier algebra $M_{cb}^{l}({{L}^{1}}(\mathbb{G}))$ to a locally compact quantum group $\mathbb{G}$ , and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf $*$ -homomorphisms between universal ${{C}^{*}}$ -algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal ${{C}^{*}}$ -algebra level, and that the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms then interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal ${{C}^{*}}$ -algebra picture, and then, again, how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the “maximal classical” quantum subgroup of a locally compact quantum group, that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups.

Copyright

References

Hide All
[1] Aristov, O. Y., Amenability and compact type for Hopf-von Neumann algebras from the homological point of view. In: Banach algebras and their applications, Contemp. Math., 363, American Mathematical Society, Providence, RI,2004, pp. 1537.
[2] Baaj, S. and Vaes, S., Double crossed products of locally compact quantum groups. J. Inst. Math. Jussieu 4(2005), 135173. http://dx.doi.Org/10.1017/S1474748005000034
[3] Bédos, E. and Tuset, L., Amenability and co-amenability for locally compact quantum groups. Internat. J. Math. 14(2003), no. 8, 865884.http://dx.doi.Org/10.1142/S0129167X03002046
[4] Brown, N. and Ozawa, N., C*-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88, American Mathematical Society, Providence, RI, 2008.http://dx.doi.Org/10.1090/gsm/088
[5] De Cannière, J., On the intrinsic group of a Kac algebra. Proc. London Math. Soc. 40(1980), 120.http://dx.doi.Org/10.1112/plms/s3-40.1.1
[6] Dales, H. G., Banach algebras and automatic continuity. London Mathematical Society Monographs, New Series, 24, The Clarendon Press, Oxford University Press, New York, 2000.
[7] Daws, M., Completely positive multipliers of quantum groups. Internat. J. Math. 23(2012), 1250132.http://dx.doi.org/10.1142/S0129167X12501327
[8] Daws, M., Multipliers of locally compact quantum groups via Hilbert C*-modules. J. Lond. Math. Soc. 84(2011), no. 2, 385407.http://dx.doi.Org/10.1112/jlms/jdrOI3
[9] Daws, M. and Le Pham, H., Isometries between quantum convolution algebras. Q. J. Math. 64(2013), no. 2, 373396.http://dx.doi.Org/10.1093/qmath/has008
[10] Daws, M., Kasprzak, P., Skalski, A., and Soltan, P., Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231(2012), no. 6, 34733501.http://dx.doi.Org/10.1016/j.aim.2012.09.002
[11] Effros, E. G. and Ruan, Z.-J., Operator spaces. London Mathematical Society Monographs, New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000.
[12] Herz, C., Harmonic synthesis for subgroups. Ann. Inst. Fourier(Grenoble) 23(1973), no. 3, 91123.http://dx.doi.org/10.5802/aif.473
[13] Hu, Z., Neufang, M., and Ruan, Z.-J., Completely bounded multipliers over locally compact quantum groups. Proc. Lond. Math. Soc. 103(2011), no. 1,139.http://dx.doi.Org/10.1112/plms/pdqO41
[14] Junge, M., Neufang, M., and Ruan, Z.-J., A representation theorem for locally compact quantum groups. Internat. J. Math. 20(2009), no. 3, 377400.http://dx.doi.org/10.1142/S0129167X09005285
[15] Kalantar, M., Representation of left centralizers for actions of locally compact quantum groups. Internat. J. Math. 24(2013), 1350025.http://dx.doi.Org/10.1142/S0129167X13500250
[16] Kalantar, M. and Neufang, M., From quantum groups to groups. Canad. J. Math. 65(2013), no. 5, 10731094.http://dx.doi.org/10.4153/CJM-2012-047-x
[17] Kustermans, J., Locally compact quantum groups in the universal setting. Internat. J. Math. 12(2001), no. 3, 289338.http://dx.doi.Org/10.1142/S0129167X01000757
[18] Kustermans, J., Locally compact quantum groups. In Quantum independent increment processes. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, pp. 99180.
[19] Kustermans, J. and Vaes, S., Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(2003), no. 1, 6892.
[20] Kustermans, J. and Vaes, S., Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(2000), no. 6, 837934.
[21] Lance, E. C., Hilbert C*-modules. A toolkit for operator algebraists. Cambridge University Press, Cambridge, 1995.http://dx.doi.Org/10.1017/CBO9780511526206
[22] Leinster, T., Basic category theory. Cambridge Studies in Advanced Mathematics, 143, Cambridge University Press, Cambridge, 2014.
[23] Masuda, T., Nakagami, Y., and Woronowicz, S. L., A C*-algebraic framework for quantum groups. Internat. J. Math. 14(2003), no. 9, 9031001.http://dx.doi.Org/10.1142/S0129167X03002071
[24] Meyer, R., Roy, S., and Woronowicz, S. L., Homomorphisms of quantum groups. Münster J. Math. 5(2012), 124.
[25] Ng, C.-K., Morphisms of multiplicative unitaries. J. Operator Theory 38(1997), no. 2, 203224.
[26] Sołtan, P. and Woronowicz, S. L., From multiplicative unitaries to quantum groups. II. J. Funct. Anal. 252(2007), no. 1, 4267.http://dx.doi.Org/10.1016/j.jfa.2007.07.006
[27] Spronk, N., Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. 89(2004), no. 1,161192.http://dx.doi.Org/10.1112/S0024611504014650
[28] Vaes, S., A new approach to induction and imprimitivity results. J. Funct. Anal. 229(2005), no. 2, 317374.http://dx.doi.Org/10.1016/j.jfa.2004.11.016
[29] Vaes, S., Locally compact quantum groups. PhD. thesis, Katholieke Universiteit Leuven, 2001.http://wis.kuleuven.be/analyse/stefaan/
[30] Vaes, S. and van Daele, A., Hopf C*-algebras. Proc. London Math. Soc. 82(2001), no. 2, 337384.http://dx.doi.Org/10.1112/S002461150101276X
[31] Woronowicz, S. L., From multiplicative unitaries to quantum groups. Internat. J. Math. 7(1996), no. 1,127149.http://dx.doi.Org/10.1142/S0129167X96000086
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed