Skip to main content Accessibility help

The Action of a Plane Singular Holomorphic Flow on a Non-invariant Branch

  • P. Fortuny Ayuso (a1) and J. Ribón (a2)


We study the dynamics of a singular holomorphic vector field at $(\mathbb{C}^{2},0)$ . Using the associated flow and its pullback to the blow-up manifold, we provide invariants relating the vector field, a non-invariant analytic branch of curve, and the deformation of this branch by the flow. This leads us to study the conjugacy classes of singular branches under the action of holomorphic flows. In particular, we show that there exists an analytic class that is not complete, meaning that there are two elements of the class that are not analytically conjugated by a local biholomorphism embedded in a one-parameter flow. Our techniques are new and offer an approach dual to the one used classically to study singularities of holomorphic vector fields.



Hide All

Both authors are partially supported by Ministerio de Economía y Competitividad, Spain, process MTM2016-77642-C2-1-P.



Hide All
[1]Brunella, M., Birational geometry of foliations. IMPA Monographs, 1, Springer, Cham, 2015.
[2]Camacho, C., Lins-Neto, A., and Sad, P., Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom. 20(1984), 143174.10.4310/jdg/1214438995
[3]Camacho, C. and Sad, P., Invariant varieties through singularities of holomorphic vector fields. Ann. of Math. 115(1982), 579595.
[4]Cano Torres, F., Desingularization strategies for three-dimensional vector fields. Lecture Notes in Mathematics, 1259, Springer-Verlag, Berlin, 1987.
[5]Cano, F., Moussu, R., and Rolin, J.-P., Non-oscillating integral curves and valuations. J. Reine Angew. Math. 582(2005), 107142.
[6]Cano, F., Moussu, R., and Sanz, F., Oscillation, spiralement, tourbillonnement. Comment. Math. Helv. 75(2000), 284318.
[7]Cano, F., Roche, C., and Spivakovsky, M., Reduction of singularities of three-dimensional line foliations. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 108(2010), 221258.
[8]Casas-Alvero, E., Singularities of plane curves. London Mathematical Society Lecture Notes Series, 276, Cambridge University Press, Cambridge, 2000.
[9]Écalle, J., Théorie itérative: introduction à la théorie des invariants holomorphes. J. Math. Pures Appl. (9) 54(1975), 183258.
[10]Greuel, G. M., Lossen, C., and Shustin, E. I., Introduction to singularities and deformations. Springer Monographs in Mathematics, Springer, Berlin, 2007.
[11]Hefez, A. and Hernandes, M. E., The analytic classification of plane branches. Bull. Lond. Math. Soc. 43(2011), 289298.
[12]Ilyashenko, Y. and Yakovenko, S., Lectures on analytic differential equations. Graduate Studies in Mathematics, 86, American Mathematical Society, Providence, RI, 2008.
[13]Martinet, J. and Ramis, J.-P., Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Scient. Éc. Norm. Sup. 16(1983), 571621.10.24033/asens.1462
[14]Brochero Martínez, F. E., Cano, F., and López-Hernanz, L., Parabolic curves for diffeomorphisms in ℂ2. Publ. Mat. 52(2008), 189194.
[15]Mattei, J. F. and Moussu, R., Holonomie et intégrales premières. Ann. Sci. Ec. Norm. Sup. 13(1980), 469523.10.24033/asens.1393
[16]Ribón, J., Embedding smooth and formal diffeomorphisms through the jordan–chevalley decomposition. J. Differential Equations 253(2012), 32113231.
[17]Seidenberg, A., Reduction of singularities of the differential equation Ady = Bdx. Amer. J. Math. 90(1968), 248269.
[18]Wall, C. T. C., Singular points of plane curves. London Mathematical Society Student Texts, 63, Cambridge University Press, 2009.
[19]Zariski, O., Le problème des modules pour les branches planes. École Polytechnique, Paris, 1973.
[20]Zhang, X., The embedding flows of 𝓒 hyperbolic diffeomorphisms. J. Differential Equations 250(2011), 22832298.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

The Action of a Plane Singular Holomorphic Flow on a Non-invariant Branch

  • P. Fortuny Ayuso (a1) and J. Ribón (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.