Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:58:40.660Z Has data issue: false hasContentIssue false

EFFECTS OF INGESTED ETHANOL ON ADULT DROSOPHILA MELANOGASTER (DIPTERA: DROSOPHILIDAE)

Published online by Cambridge University Press:  31 May 2012

Abstract

An apparatus consisting of a plastic box and a feeding circuit permits the calculation of μl volumes of ethanol ingested by Drosophila melanogaster Meigen. The net amount of ethanol taken (expressed in 100% ethanol) has been examined in various experimental conditions: sucrose solutions, ethanol–sucrose solutions at various sucrose and alcohol concentrations, ethanol solutions - cube of sucrose and ethanol solutions alone. The data obtained on ingestion by Drosophila show that the consumption of sucrose solutions was inversely proportional to the concentrations of sucrose. The amount of ethanol ingested during 14 days was directly related to the concentration of ethanol in the diets although in general the total volume of solution consumed did not vary significantly in most cases. The analyses of observations of 14 days showed that decreased mortality was obtained with the rise in the concentration of sucrose in sucrose-water solutions in 0.5–3% range and the mortality increased with the rise in the concentration of ethanol in the diets, yet ethanol-sucrose was better than cube of sugar alone.

Résumé

Un appareil composé d’une boîte de plastique et d’un circuit d’alimentation permet de mesurer les microlitres d’éthanol ingérés par Drosophila melanogaster Meigen. La quantité de liquide bu (exprimée en 100% d’éthanol) a été mesurée sous différentes conditions expérimentales : solutions de saccharose, solutions de saccharose et d’éthanol à des concentrations variables, solution d’éthanol avec des cubes de saccharose et solutions d’éthanol seulement. Les résultats démontrent que la consommation de saccharose est inversement proportionnelle à la concentration de cette substance en solution. Par contre, la quantité d’éthanol ingéré pendant 14 jours est directement fonction de la concentration d’éthanol dans les diètes bien qu’en général le volume total de la solution consommée ne varie pas significativement dans la plupart des cas. Nos observations démontrent qu’une diminution de mortalité est notée lorsque la concentration de saccharose augmente de 0.5 à 3% dans la solution. Par contre la mortalité s’élève lors d’une augmentation de la concentration d’éthanol dans les diètes. La solution de saccharose–éthanol donne une meilleure survie que celle des cubes de saccharose.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsley, R. and Kitto, G. B. 1975. Selection mechanism maintaining alcohol dehydrogenase polymorphism in Drosophila melanogaster. Third int. Conf. Isozymes 2: 733742.CrossRefGoogle Scholar
Briscoe, D. A., Robertson, A., and Malpica, J. M.. 1975. Dominance and ADH locus in response of adult Drosophila melanogaster to environmental alcohol. Nature 255: 148149.CrossRefGoogle ScholarPubMed
Chippendale, G. M. 1978. The functions of carbohydrates in insect life process. pp. 155 in Rockstein, M. (Ed.), Biochemistry of Insects. Academic Press, New York and London.Google Scholar
David, J. 1977 a. Signification d'un polymorphisme enzymatique: La deshydrogénase alcoolique chez Drosophila melanogaster. Ann. Biol. 16: 451472.Google Scholar
David, J. 1977 b. Métabolisme de l'alcool chez Drosophila melanogaster. I. Rôle de la déshydrogénase alcoolique dans la détoxification de ce produit. Soc. zool. Fr. Bull. 102: 298.Google Scholar
David, J. and Bocquet, C.. 1974. L'adaptation génétique à l'éthanol: Un paramètre important dans l'évolution des races géographiques de Drosophila melanogaster. C. r. Acad. Sci., Paris 279: 13851388.Google Scholar
David, J. 1976. Compared toxicities of different alcohols for two Drosophila sibling species: D. melanogaster and D. simulans. Comp. Biochem. Physiol. 54C 7174.Google Scholar
David, J., Fouillet, P., and Arens, M. F.. 1974. Comparaison de la sensibilité à l'alcool éthylique de six espèces de Drosophila du sous-groupe melanogaster. Archs Zool. exp. gén. 115: 401410.Google Scholar
David, J. R., Bocquet, C., Arens, M.-F., and Fouillet, P.. 1976. Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alcohols: Utilization of an ADH-null mutant. Biochem. Genet. 14: 989997.CrossRefGoogle ScholarPubMed
Dethier, V. G. 1961. The role of olfaction in alcohol ingestion by the blowfly. J. Insect Physiol. 6: 222230.CrossRefGoogle Scholar
Dethier, V. G. and Rhoades, M. Y.. 1954. Sugar preference aversion functions for the blowfly. J. exp. Zool. 126: 177204.CrossRefGoogle Scholar
Falk, R. 1979. Taste response of Drosophila melanogaster. J. Insect Physiol. 25: 8791.CrossRefGoogle Scholar
Garcin, F., Radouco-Thomas, S., Chawla, S. S., Perron, J. M., and Radouco-Thomas, C.. 1979. Metabolic correlates of tolerance to ethanol in two species of Drosophila. Soc. Neurosci. Abstr. 5: 556.Google Scholar
Hassett, C. C. 1948. The utilization of sugars and other substances by Drosophila. Biol. Bull. mar. biol. Lab., Woods Hole 95: 116123.CrossRefGoogle ScholarPubMed
Lewis, E. B. 1960. A new standard food medium. Drosophila Info. Serv. 34: 117118.Google Scholar
Libion-Mannaert, M., Delcour, J., Deltombe-Lietaert, M. C., Lenelle-Montfort, N., and Elens, A.. 1976. Ethanol as a “food” for Drosophila melanogaster: Influence of the ebony gene. Experientia 32: 2224.CrossRefGoogle Scholar
McKenzie, J. A. and Parsons, P. A.. 1972. Alcohol tolerance: An ecological parameter in the relative success of Drosophila melanogaster and D. simulans. Ecologia 10: 373388.Google Scholar
McKenzie, J. A. and Parsons, P. A.. 1974. Microdifferentiation in natural population of Drosophila malanogaster to alcohol in the environment Genetics 77: 385394.Google Scholar
Parsons, P. A. and King, S. B. 1977. Ethanol: Larval discrimination between two Drosophila sibling species. Experientia 33: 898899.CrossRefGoogle ScholarPubMed
Perron, J. M., Huot, L., Corrivault, G. W., and Chawla, S. S.. 1972. Effects of carbon dioxide anaesthesia on Drosophila melanogaster. J. Insect Physiol. 18: 18691874.CrossRefGoogle ScholarPubMed
Sokal, R. R. and Rohlf, F. J.. 1969. Biometry. The principles and practice of statistics in biological research. Freeman, San Francisco. 776 pp.Google Scholar
Strangways-Dixon, J. 1961. The relationship between nutrition, hormones and reproduction in the blowfly Calliphora erythrocephala (Meig.) I. Selective feeding in relation to the reproductive cycle, the corpus allatum volume and fertilization. J. exp. Biol. 38: 225235.CrossRefGoogle Scholar
Torchio, P. F. and Youssef, N. N.. 1973. A method of feeding bees measured amounts of insecticides in solution. Can. Ent. 105: 10111014.CrossRefGoogle Scholar
Van Herrewege, J. and David, J.. 1974. Utilisation de l'alcool éthylique dans le métabolisme énergétique d'un insecte: Influence sur la durée de survie des adultes de Drosophila melanogaster. C. r. Acad. Sci., Paris 279: 335338.Google Scholar
Van Herrewege, J. and David, J.. 1978. Feeding an insect through its respiration: Assimilation of alcohol vapors by Drosophila melanogaster. Experientia 34: 163164.CrossRefGoogle Scholar
Vigue, C. and Sofer, W.. 1976. Chemical selection of mutants that affect ADH activity in Drosophila. III. Effects of ethanol. Biochem. Genet. 14: 127135.CrossRefGoogle ScholarPubMed