Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T13:03:13.625Z Has data issue: false hasContentIssue false

ALLELOCHEMIC ACTIVITY OF AGGREGATION PHEROMONES BETWEEN THREE SYMPATRIC SPECIES OF AMBROSIA BEETLES (COLEOPTERA: SCOLYTIDAE)1

Published online by Cambridge University Press:  31 May 2012

Abstract

Field experiments tested lineatin, the aggregation pheromone of Trypodendron lineatum (Olivier), in combination with either S-(+)- or (±)-sulcatol, the pheromones of Gnathotrichus retusus (LeConte) and G. sulcatus (LeConte), respectively. Beetles of each species responded maximally to their own pheromone alone or in a binary combination. Slight, but significant cross attraction between Gnathotrichus spp. was evident, and G. retusus was slightly attracted to lineatin. Both Gnathotrichus spp., but not T. lineatum, responded to α-pinene with ethanol. These two compounds had no effect on the allelochemic activity of the pheromones. While mutually inhibitory communication would be of adaptive advantage in bark beetles which compete for an essentially 2-dimensional host, the phloem tissue, little selection pressure would occur among ambrosia beetles which share a more bountiful host, the 3-dimensional sapwood; hence the lack of mutual inhibition between Gnathotrichus spp. and T. lineatum. On the other hand, enantiomer-based specificity in pheromone communication between Gnathotrichus spp. may have been at least a partial basis for speciation. Compatibility of lineatin with either S-(+)- or (±)-sulcatol indicates that in pheromone-based pest management, 2-binary pheromone stimulus release systems can be used instead of 3 single ones.

Résumé

Des expériences de terrain ont permis d’évaluer la linéatine, phéromone d’aggrégation de Trypodendron lineatum (Olivier), en combinaison avec soit le S-(+)- ou (±)-sulcatol, les phéromones de Gnathotrichus retusus (LeConte) et G. sulcatus, respectivement. Pour chaque espèce, les réponses maximales ont été observées avec leur propre phéromone soit seule ou en combinaisons binaires. Un degré faible mais significatif de réactivité croisée a été observé entre les Gnathotrichus spp., et G. retusus était légèrement attiré par la linéatine. Les deux Gnathotrichus spp. répondent à l’α-pinène dans l’éthanol, mais pas T. lineatum. Ces deux composés n’ont pas d’effet sur l’activité allélochimique des phéromones. Bien qu’une communication mutuellement inhibitrice serait adaptative chez les scolytes compétitionnant pour un hôte essentiellement bi-dimensionnel soit le phloème, une pression de sélection réduite serait en opération chez les "ambrosias" qui se partagent un hôte plus abondant, soit le xylème tridimensionnel; ceci expliquerait l’absence d’inhibition entre Gnathotrichus spp. et T. lineatum. Par ailleurs, la spécificité de communication entre les Gnathotrichus spp., basée sur l’utilisation d’énantiomères de la même phéromone, a pu servir, au moins partiellement, de base à leur spéciation. La compatibilité de la linéatine avec soit le S-(+)- ou (±)-sulcatol indique qu’en lutte intégrée à l’aide de phéromones, 2 systèmes binaires d’émission de phéromone pourraient être utilisés au lieu de 3 systèmes simples.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, J. and Vité, J. P.. 1975. Host selection by Trypodendron lineatum. Naturwissenschaften 62: 539.CrossRefGoogle Scholar
Birch, M. C. 1978. Chemical communication in pine bark beetles. Am. Sci. 66: 409419.Google Scholar
Birch, M. C. 1980. The evolution of chemosensory specificity and diversity in Ips. Paper presented at 16th Int. Congr. Entomol., Kyoto, Japan.Google Scholar
Birch, M. C. and Wood, D. L.. 1975. Mutual inhibition of the attractant pheromone response by two species of Ips (Coleoptera: Scolytidae). J. Chem. Ecol. 1: 101113.CrossRefGoogle Scholar
Birch, M. C. and Light, D. M.. 1977. Inhibition of the attractant pheromone response in Ips pini and I. paraconfusus (Coleoptera: Scolytidae): field attraction of ipsenol and linalool. J. Chem. Ecol. 3: 257267.CrossRefGoogle Scholar
Birch, M. C., Light, D. M., and Mori, K.. 1977. Selective inhibition of response of Ips pini to its pheromone by the S-(–)- enantiomer of ipsenol. Nature 270: 738739.CrossRefGoogle Scholar
Birch, M. C., Light, D. M., Wood, D. L., Browne, L. E., Silverstein, R. M., Bergot, B. J., Ohloff, G., West, J. R., and Young, J. C.. 1980 a. Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. J. Chem. Ecol. 6: 703717.CrossRefGoogle Scholar
Birch, M. C., Švihra, P., Paine, T. D., and Miller, J. C.. 1980 b. Influence of chemically mediated behavior on host tree colonization by four cohabiting species of bark beetles. J. Chem. Ecol. 6: 395414.CrossRefGoogle Scholar
Borden, J. H. and McLean, J. A.. 1979. Secondary attraction in Gnathotrichus retusus and cross-attraction of G. sulcatus (Coleoptera: Scolytidae). J. Chem. Ecol. 5: 7988.CrossRefGoogle Scholar
Borden, J. H. and McLean, J. A.. 1981. Pheromone-based suppression of ambrosia beetles in industrial timber processing areas. pp. 133154in Mitchell, E. R. (Ed.), Management of Insect Pests with Semiochemicals: Concepts and Practice. Plenum, New York.CrossRefGoogle Scholar
Borden, J. H., Chong, L., McLean, J. A., Slessor, K. N., and Mori, K.. 1976. Gnathotrichus sulcatus: synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894896.CrossRefGoogle ScholarPubMed
Borden, J. H., Handley, J. R., Johnston, B. D., MacConnell, J. G., Silverstein, R. M., Slessor, K. N., Swigar, A. A., and Wong, D. T. W.. 1979. Synthesis and field testing of 4,6,6-lineatin, the aggregation pheromone of Trypodendron lineatum (Coleoptera: Scolytidae). J. Chem. Ecol. 5: 681689.CrossRefGoogle Scholar
Borden, J. H., Handley, J. R., McLean, J. A., Silverstein, R. M., Chong, L., Slessor, K. N., Johnston, B. D., and Schuler, H. R.. 1980 a. Enantiomer-based specificity in pheromone communication by two sympatric Gnathotrichus species (Coleoptera: Scolytidae). J. Chem. Ecol. 6: 445456.CrossRefGoogle Scholar
Borden, J. H., Lindgren, B. S., and Chong, L.. 1980 b. Ethanol and α-pinene as synergists for the aggregation pheromones of two Gnathotrichus species. Can. J. For. Res. 10: 303305.CrossRefGoogle Scholar
Bright, D. E. 1976. The bark beetles of Canada and Alaska. Can. Dep. Agric. Publ. 1576.Google Scholar
Brown, W. L. Jr., 1968. An hypothesis concerning the function of the metapleural glands in ants. Am. Nat. 102: 188191.CrossRefGoogle Scholar
Brown, W. L. Jr., Eisner, T. E., and Whittaker, R. N.. 1970. Allomones and kairomones: transpecific chemical messengers. BioScience 20: 2122.CrossRefGoogle Scholar
Byrne, K. J., Swigar, A. A., Silverstein, R. M., Borden, J. H., and Stokkink, E.. 1974. Sulcatol: population aggregation pheromone in the scolytid beetle, Gnathotrichus sulcatus. J. Insect Physiol. 20: 18951900.CrossRefGoogle ScholarPubMed
Cade, S. C., Hrutfiord, B. F., and Gara, R. I.. 1970. Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. J. econ. Ent. 63: 10141015.CrossRefGoogle Scholar
Hopping, G. R. 1963. The natural groups of species in the genus Ips De Geer (Coleoptera: Scolytidae) in North America. Can. Ent. 95: 508516.CrossRefGoogle Scholar
Johnston, B. D. and Slessor, K. N.. 1979. Facile synthesis of the enantiomers of sulcatol. Can. J. Chem. 57: 233235.CrossRefGoogle Scholar
Lanier, G. N. and Burkholder, W. E.. 1974. Pheromones in speciation of Coleoptera. pp. 161189in Birch, M. C. (Ed.), Pheromones. North Holland, Amsterdam.Google Scholar
MacConnell, J. G., Borden, J. H., Silverstein, R. M., and Stokkink, E.. 1977. Isolation and tentative identification of lineatin, a pheromone from the frass of Trypodendron lineatum (Coleoptera: Scolytidae). J. Chem. Ecol. 3: 549561.CrossRefGoogle Scholar
Moeck, H. A. 1971. Field test of ethanol as a scolytid attractant. Can. Dep. Fish. For., Bi-Mon. Res. Notes 27(2): 1112.Google Scholar
Nijholt, W. W. and Schönherr, J.. 1976. Chemical response behavior of scolytids in West Germany and Western Canada. Environ. Can., Bi-Mon. Res. Notes 32: 3132.Google Scholar
Prest, V. K. 1969. Retreat of Wisconsin and recent ice in North America. Geol. Survey Canada, Map 1257A.CrossRefGoogle Scholar
Slessor, K. N., Oehlschlager, A. C., Johnston, B. D., Pierce, H. D. Jr., Grewal, S. K., and Wickremesinghe, L. K. G.. 1980. Lineatin: regioselective synthesis and resolution leading to the chiral pheromone of Trypodendron lineatum. J. Org. Chem. 45: 22902297.CrossRefGoogle Scholar
Vité, J. P. and Bakke, A.. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle. Naturwissenschaften 66: 528529.CrossRefGoogle Scholar
Whittaker, R. H. and Feeny, P. P.. 1971. Allelochemics: chemical interactions between species. Science 171: 757770.CrossRefGoogle ScholarPubMed
Yates, F. 1933. The analysis of replicated experiments when the field results are incomplete. Empire J. Exp. Agric. 1: 129142.Google Scholar