Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:44:33.523Z Has data issue: false hasContentIssue false

Global dimension of factor rings

Published online by Cambridge University Press:  17 April 2009

Yasuyuki Hirano
Affiliation:
Department of MathematicsOkayama UniversityOkayama 700, Japan
Jae Keol Park
Affiliation:
Mathematisches Institut BUniversitāt Stuttgart7 Stuttgart 80, Germany
Klaus W. Roggenkamp
Affiliation:
Department of MathematicsBusan National UniversityBusan 609-735, Korea
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a right Noetherian ring with right global dimension bounded by 2, which is integral over its centre, and let a be a regular non-unit element in R. Then R/a; R is right hereditary if and only if a; is not in the square of any maximal ideal of R. More generally, we compare for a right Noetherian ring R which is integral over its center, the global dimension of R with the global dimension of R/(a1R + a2R + … + arR) for a regular R-sequence {ai}, which will allow us to give a considerable extension of a result of Hillman.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Auslander, M., Isolated singularities and existence of almost split sequences, Lecture Notes in Math. 1178 (Springer-Verlag, Berlin, Heidelberg, New York, 1986), pp. 194242.Google Scholar
[2]Auslander, M. and Buchsbaum, D., ‘Homological dimension in local rings’, Trans. Amer. Math. Soc. 85 (1957), 390405.CrossRefGoogle Scholar
[3]Boratyński, M., ‘A change of rings theorem and the Artin-Rees propperty’, Proc. Amer. Math. Soc. 53 (1975), 307310.CrossRefGoogle Scholar
[4]Brown, K.A., Hajarnavis, C.R. and MacEacharn, A.B., ‘Rings of finite global dimension integral over their centres’, Comm. Algebra 6 (1978), 6793.Google Scholar
[5]Chamarie, M. and Hudry, A., ‘Anneaux Noetheriens a droite entiers sur un sous-anneau de leur centre’, Comm. Algebra 6 (1978), 203220.CrossRefGoogle Scholar
[6]Hartshorne, R., Algebraic geometry, Graduate Texts in Math. (Springer-Verlag, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[7]Hillman, J.A., ‘Polynomials determining Dedekind domains’, Bull. Austral. Math. Soc. 29 (1984), 167175.CrossRefGoogle Scholar
[8]Igusa, K., ‘Notes on the no loops conjectures’, J. Pure Appl. Algebra 69 (1990), 161176.CrossRefGoogle Scholar
[9]Kaplansky, I., Commutative rings (Univ. of Chicago Press, Chicago, 1970).Google Scholar
[10]McConnell, J.C. and Robson, J.C., Noncommutative Noetherian rings (John Wiley and Sons, New York, 1987).Google Scholar
[11]Năstăsescu, C. and van Oystaeyen, F., Dimensions of ring theory (Kluwer, Boston, 1987).CrossRefGoogle Scholar
[12]Marubayashi, H., Lee, Y. and Park, J.K., ‘Polynomials determining hereditary prime PI-rings’, Comm. Algebra 20 (1992), 25032511.CrossRefGoogle Scholar
[13]Park, J.K. and Roggenkamp, K.W., ‘A note on hereditary rings’, Comm. Algebra 17 (1989), 14771493.CrossRefGoogle Scholar
[14]Ramras, M., ‘Maximal orders over regular local rings of dimension two’, Trans. Amer. Math. Soc. 142 (1969), 457479.CrossRefGoogle Scholar
[15]Ramras, M., ‘Maximal orders over regular local rings’, Trans. Amer. Math. Soc. 155 (1971), 345352.CrossRefGoogle Scholar
[16]Robson, J.C. and Small, L.W., ‘Hereditary prime P.I. rings are classical hereditary orders‘, J. London Math. Soc. 8 (1974), 499503.CrossRefGoogle Scholar
[17]Zariski, O. and Samuel, P., Commutative Algebra, Vol.II (Van Nostrand, Princeton, 1960).CrossRefGoogle Scholar