Skip to main content Accessibility help
×
Home

Undecidability of First-Order Intuitionistic and Modal Logics with Two variables

  • Roman Kontchakov (a1), Agi Kurucz (a2) and Michael Zakharyaschev (a3)

Abstract

We prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those in the standard nomenclature above, even the monadic two-variable fragments turn out to be undecidable.

Copyright

References

Hide All
[1] Berger, R., The undecidability of the domino problem, Memoirs of the American Mathematical Society, vol. 66 (1966).
[2] Börger, E., Grädel, E., and Gurevich, Yu., The classical decision problem, Perspectives in Mathematical Logic, Springer-Verlag, 1997.
[3] Bull, R. A., MIPC as the formalization of an intuitionistic concept of modality, The Journal of Symbolic Logic, vol. 31 (1966), pp. 609616.
[4] Chagrov, A. and Zakharyaschev, M., Modal logic, Oxford Logic Guides, vol. 35, Clarendon Press, Oxford, 1997.
[5] Church, A., A note on the “Entscheidungsproblem”, The Journal of Symbolic Logic, vol. 1 (1936), pp. 4041.
[6] Dummett, M., Elements of intuitionism, 2nd ed., Clarendon Press, Oxford, 1977.
[7] Gabbay, D., Semantical investigations in Heyting's intuitionistic logic, D. Reidel, 1981.
[8] Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M., Many-dimensional modal logics: Theory and applications, Studies in Logic, vol. 148, Elsevier, 2003.
[9] Gabbay, D. and Shehtman, V., Undecidability of modal and intermediate first-order logics with two individual variables, The Journal of Symbolic Logic, vol. 58 (1993), pp. 800823.
[10] Grädel, E. and Otto, M., On logics with two variables, Theoretical Computer Science, vol. 224 (1999), pp. 73113.
[11] Halmos, P., Algebraic logic, IV, Transactions of the American Mathematical Society, vol. 86 (1957), pp. 127.
[12] Henkin, H., Monk, J. D., and Tarski, A., Cylindric algebras, Part II, Studies in Logic, vol. 115, North-Holland, 1985.
[13] Hirsch, R. and Hodkinson, I., Representability is not decidable for finite relation algebras, Transactions of the American Mathematical Society, vol. 353 (2001), pp. 14031425.
[14] Hirsch, R., Hodkinson, I., and Kurucz, A., On modal logics between K × K × K and S5 × S5 × S5 , The Journal of Symbolic Logic, vol. 67 (2002), pp. 221234.
[15] Hodkinson, I., Wolter, F., and Zakharyaschev, M., Decidable fragments of first-order temporal logics, Annals of Pure and Applied Logic, vol. 106 (2000), pp. 85134.
[16] Hodkinson, I., Wolter, F., and Zakharyaschev, M., Decidable and undecidable fragments of first-order branching temporal logics, Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS'02), IEEE, 2002, pp. 393402.
[17] Hughes, G. and Cresswell, M., A new introduction to modal logic, Routledge, 1996.
[18] Kripke, S., The undecidability of monadic modal quantification theory, Zeitschrift für Matematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 113116.
[19] Kripke, S., Semantical analysis of intuitionistic logic I, Formal systems and recursive functions (Crossley, J. and Dummett, M., editors), North-Holland, 1965, pp. 92130.
[20] Kripke, S., Semantical analysis of intuitionistic logic II, Unpublished, 1968.
[21] Maslov, S., Mints, G., and Orevkov, V., Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables, Soviet Mathematics Doklady, vol. 6 (1965), pp. 918920.
[22] Mints, G., Some calculi of modal logic, Trudy Matematicheskogo Instituta imeni V.A. Steklova, vol. 98 (1968), pp. 88111.
[23] Mortimer, M., On languages with two variables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 135140.
[24] Ono, H., On some intuitionistic modal logics, Publications of the Research Institute for Mathematical Science, Kyoto University, vol. 13 (1977), pp. 5567.
[25] Rasiowa, H. and Sikorski, R., The mathematics of metamathematics, Polish Scientific Publishers, 1963.
[26] Surányi, J., Zur Reduktion des Entscheidungsproblems des logischen Funktionenkalküls, Mathematikai és Fizikai Lapok, vol. 50 (1943), pp. 5174.
[27] Troelstra, A., Principles of intuitionism, Lecture Notes in Mathematics, vol. 95, Springer-Verlag, 1969.
[28] van Dalen, D., Intuitionistic logic, Handbook of philosophical logic (Gabbay, D. and Guenthner, F., editors), vol. 5, Kluwer, second ed., 2002, pp. 1114.
[29] Wolter, F. and Zakharyaschev, M., Decidable fragments of first-order modal logics, The Journal of Symbolic Logic, vol. 66 (2001), pp. 14151438.

Undecidability of First-Order Intuitionistic and Modal Logics with Two variables

  • Roman Kontchakov (a1), Agi Kurucz (a2) and Michael Zakharyaschev (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed