Skip to main content Accessibility help
×
Home

STRONG JUMP-TRACEABILITY

  • NOAM GREENBERG (a1) and DAN TURETSKY (a2)

Abstract

We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.

Copyright

References

Hide All
[1]Ambos-Spies, K., Jockusch, C. G. Jr., Shore, R. A., and Soare, R. I., An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees. Transactions of the American Mathematical Society, vol. 281 (1984), no. 1, pp. 109128.
[2]Barmpalias, G., Algorithmic randomness and measures of complexity, this Bulletin, vol. 19 (2013), no. 3, pp. 318–350.
[3]Barmpalias, G., Downey, R., and Greenberg, N., K-trivial degrees and the jump-traceability hierarchy. Proceedings of the American Mathematical Society, vol. 137 (2009), no. 6, pp. 20992109.
[4]Barmpalias, G. and Montalbán, A., A cappable almost everywhere dominating computably enumerable degree, Proceedings of the Third International Conference on Computability and Complexity in Analysis (CCA 2006) (Censer, D., Dillhage, R., Grubba, T., and Weihrauch, K., editors), Electronic Notes in Theoretical Computer Science, vol. 167, Elsevier, Amsterdam, 2007, pp. 1731
[5]Bartoszyński, T., Additivity of measure implies additivity of category. Transactions of the American Mathematical Society, vol. 281 (1984), no. 1, pp. 209213.
[6]Bienvenu, L., Day, A. R., Greenberg, N., Kučera, A., Miller, J. S., Nies, A., and Turetsky, D., Computing K-trivial sets by incomplete random sets, this Bulletin, vol. 20 (2014), no. 1, pp. 80–90.
[7]Bienvenu, L., Downey, R., Greenberg, N., Nies, A., and Turetsky, D., Characterizing lowness for Demuth randomness. Journal of Symbolic Logic, vol. 79 (2014), no. 2, pp. 526560.
[8]Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., and Turetsky, D., Coherent randomness tests and computing the K-trivial sets. Journal of the European Mathematical Society, vol. 18 (2016), no. 4, pp. 773812.
[9]Chaitin, G. J., Information-theoretic characterizations of recursive infinite strings. Theoretical Computer Science, vol. 2 (1976), no. 1, pp. 4548.
[10]Chaitin, G. J., Nonrecursive infinite strings with simple initial segments. IBM Journal of Research and Development, vol. 21 (1977), pp. 350359.
[11]Cholak, P., Downey, R. G., and Greenberg, N., Strong jump-traceabilty I: The computably enumerable case. Advances in Mathematics, vol. 217 (2008), no. 5, pp. 20452074.
[12]Cholak, P., Groszek, M., and Slaman, T., An almost deep degree. Journal of Symbolic Logic, vol. 66 (2001), no. 2, pp. 881901.
[13]Coles, R. J., Downey, R. G., Jockusch, C. G. Jr., and Laforte, G., Completing pseudojump operators. Annals of Pure and Applied Logic, vol. 136 (2005), no. 3, pp. 297333.
[14]Day, A. R. and Miller, J. S., Density, forcing, and the covering problem. Mathematical Research Letters, vol. 22 (2015), no. 3, pp. 719727.
[15]Demuth, O., Some classes of arithmetical real numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 23 (1982), no. 3, pp. 453465.
[16]Demuth, O., Remarks on the structure of tt-degrees based on constructive measure theory. Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), no. 2, pp. 233247.
[17]Diamondstone, D., Promptness does not imply superlow cuppability. Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 12641272.
[18]Diamondstone, D., Downey, R. G., Greenberg, N., and Turetsky, D. D., High degrees computable from all SJT-hard degrees, in preparation
[19]Diamondstone, D., Greenberg, N., and Turetsky, D. D., Inherent enumerability of strong jump-traceability. Transactions of the American Mathematical Society, vol. 367 (2015), no. 3, pp. 17711796.
[20]Downey, R. and Greenberg, N., Strong jump-traceability II: K-triviality. Israel Journal of Mathematics, vol. 191 (2012), no. 2, pp. 647665.
[21]Downey, R. and Greenberg, N., Pseudo-jump inversion, upper cone avoidance, and strong jump-traceability. Advances in Mathematics, vol. 237 (2013), pp. 252285.
[22]Downey, R., Jockusch, C. G., and Stob, M., Array nonrecursive degrees and genericity, Computability, Enumerability, Unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., editors), London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, Cambridge, 1996, pp. 93104.
[23]Downey, R. G., Hirschfeldt, D. R., Nies, A., and Stephan, F., Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences (Downey, R., Ding, D., Tung, S. P., Qui, Y. H., Yasugi, M., and Wu, G., editors), Singapore University Press, Singapore, 2003, pp. 103131.
[24]Downey, R. G., Jockusch, C. G. Jr., and Stob, M., Array nonrecursive sets and multiple permitting arguments, Recursion Theory Week (Oberwolfach, 1989) (Ambos-Spies, K., Müller, G. H., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1432, Springer, Berlin, 1990, pp. 141173.
[25]Figueira, S., Nies, A., and Stephan, F., Lowness properties and approximations of the jump. Annals of Pure and Applied Logic, vol. 152 (2008), no. 1–3, pp. 5166.
[26]Franklin, J. N. Y., Greenberg, N., Stephan, F., and Wu, G., Anti-complex sets and reducibilities with tiny use. Journal of Symbolic Logic, vol. 78 (2013), no. 4, pp. 13071327.
[27]Greenberg, N., Hirschfeldt, D. R., and Nies, A., Characterizing the strongly jump-traceable sets via randomness. Advances in Mathematics, vol. 231 (2012), no. 3–4, pp. 22522293.
[28]Greenberg, N. and Nies, A., Benign cost functions and lowness properties. Journal of Symbolic Logic, vol. 76 (2011), no. 1, pp. 289312.
[29]Greenberg, N. and Turetsky, D. D., Strong jump-traceability and Demuth randomness. Proceedings of the London Mathematical Society, vol. 108 (2014), no. 3, pp. 738779.
[30]Hirschfeldt, D. R., Nies, A., and Stephan, F., Using random sets as oracles. Journal of the London Mathematical Society, vol. 75 (2007), no. 3, pp. 610622.
[31]Hölzl, R., Kräling, T., and Merkle, W., Time-bounded Kolmogorov complexity and Solovay functions, Mathematical Foundations of Computer Science (Královič, R. and Niwiski, D., editors), Lecture Notes in Computer Science, vol. 5734, Springer, Berlin, 2009, pp. 392402.
[32]Ishmukhametov, S., Weak recursive degrees and a problem of Spector, Recursion Theory and Complexity (Kazan, 1997) (Arslanov, M. M. and Lempp, S., editors), De Gruyter Series in Logic and its Applications, vol. 2, de Gruyter, Berlin, 1999, pp. 8187.
[33]Jockusch, C. G. Jr. and Shore, R. A., Pseudojump operators. I. The r.e. case. Transactions of the American Mathematical Society, vol. 275 (1983), no. 2, pp. 599609.
[34]Jockusch, C. G. Jr. and Shore, R. A., Pseudojump operators. II. Transfinite iterations, hierarchies and minimal covers. Journal of Symbolic Logic, vol. 49 (1984), no. 4, pp. 12051236.
[35]Jockusch, C. G. Jr. and Soare, R. I., Degrees of members of ${\rm{\Pi }}_1^0$ classes. Pacific Journal of Mathematics, vol. 40 (1972), pp. 605616.
[36]Kjos-Hanssen, B., Miller, J. S., and Solomon, R., Lowness notions, measure and domination. Journal of the London Mathematical Society, vol. 85 (2012), no. 3, pp. 869888.
[37]Kjos-Hanssen, B., Nies, A., and Stephan, F., Lowness for the class of Schnorr random reals. SIAM Journal on Computing, vol. 35 (2005), no. 3, pp. 647657.
[38]Kučera, A., An alternative, priority-free, solution to Post’s problem, Mathematical Foundations of Computer Science, 1986 (Bratislava, 1986) (Gruska, J., Rovan, B., and Wiedermann, J., editors), Lecture Notes in Computer Science, vol. 233, Springer, Berlin, 1986, pp. 493500.
[39]Kučera, A., On relative randomness. Annals of Pure and Applied Logic, vol. 63 (1993), no. 1, pp. 6167. 9th International Congress of Logic, Methodology and Philosophy of Science (Uppsala, 1991).
[40]Kučera, A. and Nies, A., Demuth randomness and computational complexity. Annals of Pure and Applied Logic, vol. 162 (2011), no. 7, pp. 504513.
[41]Miller, J. S. and Nies, A., Randomness and computability: Open questions, this Bulletin, vol. 12 (2006), no. 3, pp. 390–410.
[42]Miller, W. and Martin, D. A., The degrees of hyperimmune sets. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 159166.
[43]Ng, K. M., On strongly jump traceable reals. Annals of Pure and Applied Logic, vol. 154 (2008), no. 1, pp. 5169.
[44]Ng, K. M., On very high degrees. Journal of Symbolic Logic, vol. 73 (2008), no. 1, pp. 309342.
[45]Ng, K. M., Computability, traceability and beyond, Ph.D. thesis, Victoria University of Wellington, 2009.
[46]Ng, K. M., Beyond strong jump traceability. Proceedings of the London Mathematical Society, vol. 102 (2011), no. 3, pp. 423467.
[47]Nies, A., Lowness properties and randomness. Advances in Mathematics, vol. 197 (2005), no. 1, pp. 274305.
[48]Nies, A., Eliminating concepts, Computational Prospects of Infinity. Part II. Presented Talks (Chong, C., Feng, Q., Slaman, T. A., Woodin, W. H., and Yang, Y., editors), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 15, World Science Publisher, Hackensack, NJ, 2008, pp. 225247.
[49]Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009.
[50]Nies, A., Computably enumerable sets below random sets. Annals of Pure and Applied Logic, vol. 163 (2012), no. 11, pp. 15961610.
[51]Simpson, S. G., Almost everywhere domination and superhighness. Mathematical Logic Quarterly, vol. 53 (2007), no. 4–5, pp. 462482.
[52]Solovay, R. M., Draft of Paper (or Series of Papers) Related to Chaitin’s Work, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975, 215 pages.
[53]Terwijn, S. A., Computability and measure, Ph.D. thesis, University of Amsterdam, 1998.
[54]Terwijn, S. A. and Zambella, D., Computational randomness and lowness. Journal of Symbolic Logic, vol. 66 (2001), no. 3, pp. 11991205.
[55]Turetsky, D., A K-trivial set which is not jump traceable at certain orders. Information Processing Letters, vol. 112 (2012), no. 13, pp. 544547.

Keywords

Related content

Powered by UNSILO

STRONG JUMP-TRACEABILITY

  • NOAM GREENBERG (a1) and DAN TURETSKY (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.