Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T06:07:50.564Z Has data issue: false hasContentIssue false

LARGE CARDINALS AS PRINCIPLES OF STRUCTURAL REFLECTION

Published online by Cambridge University Press:  23 January 2023

JOAN BAGARIA*
Affiliation:
INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS (ICREA) BARCELONA, CATALONIA, SPAIN and DEPARTAMENT DE MATEMÀTIQUES I INFORMÀTICA UNIVERSITAT DE BARCELONA GRAN VIA DE LES CORTS CATALANES, 585 08007 BARCELONA, CATALONIA, SPAIN E-mail: joan.bagaria@icrea.cat E-mail: bagaria@ub.edu

Abstract

After discussing the limitations inherent to all set-theoretic reflection principles akin to those studied by A. Lévy et. al. in the 1960s, we introduce new principles of reflection based on the general notion of Structural Reflection and argue that they are in strong agreement with the conception of reflection implicit in Cantor’s original idea of the unknowability of the Absolute, which was subsequently developed in the works of Ackermann, Lévy, Gödel, Reinhardt, and others. We then present a comprehensive survey of results showing that different forms of the new principle of Structural Reflection are equivalent to well-known large cardinal axioms covering all regions of the large-cardinal hierarchy, thereby justifying the naturalness of the latter.

Type
Articles
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, W., Zur Axiomatik der Mengenlehre . Mathematische Annalen , vol. 131 (1956), pp. 336345.CrossRefGoogle Scholar
Bagaria, J., ${C}^{(n)}$ -cardinals . Archive for Mathematical Logic , vol. 51 (2012), pp. 213240.CrossRefGoogle Scholar
Bagaria, J., Casacuberta, C., Mathias, A. R. D., and Rosický, J., Definable orthogonality classes in accessible categories are small . Journal of the European Mathematical Society , vol. 17 (2015), no. 3, pp. 549589.CrossRefGoogle Scholar
Bagaria, J., Gitman, V., and Schindler, R. D., Generic Vopěnka’s principle, remarkable cardinals, and the weak proper forcing axiom . Archive for Mathematical Logic , vol. 56 (2017), nos. 1–2, pp. 120.CrossRefGoogle Scholar
Bagaria, J., Koellner, P., and Woodin, H., Large cardinals beyond choice, this Journal, vol. 25 (2019), no. 3, pp. 283–318.Google Scholar
Bagaria, J. and Lücke, P.. Patterns of structural reflection in the large-cardinal hierarchy, 2022, submitted.Google Scholar
Bagaria, J. and Lücke, P., Huge reflection . Annals of Pure and Applied Logic , vol. 174 (2023), no. 1, p. 103171.CrossRefGoogle Scholar
Bagaria, J. and Väänänen, J., On the symbiosis between model-theoretic and set-theoretic properties of large cardinals . The Journal of Symbolic Logic , vol. 81 (2016), no. 2, pp. 584604.CrossRefGoogle Scholar
Bagaria, J. and Wilson, T., The Weak Vopěnka Principle for definable classes of structures . The Journal of Symbolic Logic , vol. 88 (2023), pp. 145168.CrossRefGoogle Scholar
Cai, J. and Tsaprounis, K., On strengthenings of superstrong cardinals . New York Journal of Mathematics , vol. 25 (2019), pp. 174194.Google Scholar
Cantor, G., Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein Mathematisch-Philosophischer Versuch in der Lehre des Unendlichen , B. G. Teubner, Leipzig, 1883.Google Scholar
Feferman, S., Review of: Azriel Lévy, “On the principles of reflection in axiomatic set theory” , Logic, Methodology and Philosophy of Science (Proceedings of the 1960 International Congress) (E. Nagel, P. Suppes, and A. Tarski, editors), Stanford University Press, Stanford, 1962, pp. 8793.Google Scholar
Jané, I., Idealist and realist elements in Cantor’s approach to set theory . Philosophia Mathematica , vol. 18 (2010), no. 2, pp. 193226.CrossRefGoogle Scholar
Jech, T., Set Theory , The Third Millenium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2002.Google Scholar
Kanamori, A., The Higher Infinite , second ed., Springer, Berlin, Heidelberg, 2003.Google Scholar
Koellner, P., On reflection principles . Annals of Pure and Applied Logic , vol. 157 (2009), nos. 2–3, pp. 206219.CrossRefGoogle Scholar
Koepke, P., An introduction to extenders and core models for extender sequences , Logic Colloquium’87 (H.-D. Ebbinghaus et al., editors), Elsevier, North Holland, Amsterdam, 1989.Google Scholar
Kunen, K., Elementary embeddings and infinitary combinatorics . The Journal of Symbolic Logic , vol. 36 (1971), pp. 407413.CrossRefGoogle Scholar
Lévy, A., On Ackermann’s set theory . The Journal of Symbolic Logic , vol. 24 (1959), pp. 154166.CrossRefGoogle Scholar
Lévy, A., Axiom schemata of strong infinity in axiomatic set theory . Pacific Journal of Mathematics , vol. 10 (1960), pp. 223238.CrossRefGoogle Scholar
Lévy, A., Principles of reflection in axiomatic set theory . Fundamenta Mathematicae , vol. 49 (1960/1961), pp. 110.CrossRefGoogle Scholar
Lévy, A., On the principles of reflection in axiomatic set theory , Logic, Methodology and Philosophy of Science (Proceedings of the 1960 International Congress) , Stanford University Press, Stanford, 1962, pp. 8793.Google Scholar
Lücke, P., Structural reflection, shrewd cardinals and the size of the continuum . Journal of Mathematical Logic , vol. 22 (2022), no. 2, p. 2250007.CrossRefGoogle Scholar
Magidor, M., On the role of supercompact and extendible cardinals in logic . Israel Journal of Mathematics , vol. 10 (1971), no. 2, pp. 147157.CrossRefGoogle Scholar
Magidor, M. and Väänänen, J., On Löwenheim–Skolem–Tarski numbers for extensions of first-order logic . Journal of Mathematical Logic , vol. 11 (2011), no. 1, pp. 87113.CrossRefGoogle Scholar
McCallum, R., A consistency proof for some restrictions of Tait’s reflection principles . Mathematical Logic Quarterly , vol. 50 (2013), nos. 1–2, pp. 112118.CrossRefGoogle Scholar
Mitchell, W. J., Beginning inner model theory , Handbook of Set Theory (M. Foreman and A. Kanamori, editors), Springer, Dordrecht, 2010, pp. 14491495.CrossRefGoogle Scholar
Rathjen, M., Recent advances in ordinal analysis: ${\varPi}_2^1$ -CA and related systems, this Journal, vol. 1 (1995), no. 4, pp. 468–485.Google Scholar
Reinhardt, W., Remarks on reflection principles, large cardinals, and elementary embeddings , Axiomatic Set Theory. Proceedings of Symposia in Pure Mathematics, XIII, Part II , vol. 10, American Mathematical Society, Providence, 1974, pp. 189205.Google Scholar
Reinhardt, W. N., Ackermann’s set theory equals ZF . Annals of Mathematical Logic , vol. 2 (1970), no. 2, pp. 189249.CrossRefGoogle Scholar
Schindler, R.-D., Proper forcing and remarkable cardinals . The Journal of Symbolic Logic , vol. 6 (2000), no. 2, pp. 176184.CrossRefGoogle Scholar
Schindler, R.-D., The core model for almost linear iterations . Annals of Pure and Applied Logic , vol. 116 (2002), no. 1, pp. 205272.CrossRefGoogle Scholar
Schindler, R.-D., Remarkable cardinals , Infinity, Computability, and Metamathematics: Festschrift in Honour of the 60th Birthdays of Peter Koepke and Philip Welch, Tributes (S. Geschke, B. Loewe and P. Schlicht, editors), College Publications, London, 2014, pp. 299308.Google Scholar
Stavi, J. and Väänänen, J., Reflection principles for the continuum , Logic and Algebra , Contemporary Mathematics, vol. 302 (Y. Zhang, editor), American Mathematical Society, Providence, 2002, pp. 5984.CrossRefGoogle Scholar
Tait, W. W., Gödel’s unpublished papers on foundations of mathematics . Philosophia Mathematica , vol. 9 (2001), pp. 87126.CrossRefGoogle Scholar
Wang, H., A Logical Journey: From Gödel to Philosophy , MIT Press, Cambridge, 1996.Google Scholar
Wilson, T., Weakly remarkable cardinals, Erdös cardinals, and the generic Vopěnka principle . The Journal of Symbolic Logic , vol. 84 (2019), no. 4, pp. 17111721.CrossRefGoogle Scholar