Skip to main content Accessibility help
×
×
Home

GÖDEL’S NOTRE DAME COURSE

  • MILOŠ ADŽIĆ (a1) and KOSTA DOŠEN (a2)

Abstract

This is a companion to a paper by the authors entitled “Gödel’s natural deduction,” which presented and made comments about the natural deduction system in Gödel’s unpublished notes for the elementary logic course he gave at the University of Notre Dame in 1939. In that earlier paper, which was itself a companion to a paper that examined the links between some philosophical views ascribed to Gödel and general proof theory, one can find a brief summary of Gödel’s notes for the Notre Dame course. In order to put the earlier paper in proper perspective, a more complete summary of these interesting notes, with comments concerning them, is given here.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      GÖDEL’S NOTRE DAME COURSE
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      GÖDEL’S NOTRE DAME COURSE
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      GÖDEL’S NOTRE DAME COURSE
      Available formats
      ×

Copyright

References

Hide All
[1] Bernays, P., Axiomatische Untersuchung des Aussagen-Kalkuls der “Principia Mathematica” . Mathematische Zeitschrift, vol. 25 (1926), pp. 305320.
[2] Carroll, L., What the Tortoise said to Achilles . Mind, vol. 4 (1895), pp. 278280.
[3] Cassou-Noguès, P., Gödel’s introduction to logic in 1939 . History and Philosophy of Logic, vol. 30 (2009), pp. 6990.
[4] Dawson, J. W. Jr., Logical Dilemmas: The Life and Work of Kurt Gödel, Peters, Wellesley, 1997.
[5] Dawson, J. W. Jr., Kurt Gödel at Notre Dame. Logic at Notre Dame , pp. 4–10, available at https://math.nd.edu/assets/13975/logicatndweb.pdf.
[6] Dawson, J. W. Jr. and Dawson, C. A., Future tasks for Gödel scholars, this Bulletin, vol. 11 (2005), pp. 150171.
[7] Došen, K. and Adžić, M., Gödel on deduction, preprint, available at http://www.mi.sanu.ac.rs/∼kosta/DAgoedded.pdf; http://arXiv.org.
[8] Došen, K. and Adžić, M., Gödel’s natural deduction, preprint, available at http://www.mi.sanu.ac.rs/∼kosta/DAgoednatded.pdf; http://arXiv.org.
[9] Dummett, M. A. E., A propositional calculus with denumerable matrix . The Journal of Symbolic Logic, vol. 24 (1959), pp. 97106.
[10] Gentzen, G., Untersuchungen über das logische Schließen . Mathematische Zeitschrift, vol. 39 (1935), pp. 176210, 405–431 (English translation: Investigations into logical deduction, The Collected Papers of Gerhard Gentzen , M. E. Szabo, editor and translator, North-Holland, Amsterdam, 1969, pp. 68–131, 312–317).
[11] Gödel, K., Zum intuitionistischen Aussagenkalkül . Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 6566 (reprinted with an additional comment: Ergebnisse eines mathematischen Kolloquiums , vol. 4(1933), p. 40; reprinted with an English translation: On the intuitionistic propositional calculus, in [13], pp. 222–225).
[12] Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls . Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 3940 (reprinted with an English translation: An interpretation of the intuitionistic propositional calculus, in [13], pp. 296–303).
[13] Gödel, K., Collected Works, Volume I, Publications 1929–1936 (Feferman, S., Dawson, J. W. Jr., Kleene, S. C., Moore, G. H., Solovay, R. M., and van Heijenoort, J., editors), Oxford University Press, New York, 1986.
[14] Gödel, K., Collected Works, Volume V, Correspondence H-Z (Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Sieg, W., editors), Oxford University Press, New York, 2003.
[15] Hilbert, D. and Ackermann, W., Grundzüge der theoretischen Logik, Springer, Berlin, 1928 (English translation: Principles of Theoretical Logic , Chelsea, New York, 1950).
[16] Jaśkowski, S., On the rules of suppositions in formal logic . Studia Logica, vol. 1 (1934), pp. 532 (reprinted in: Polish Logic 1920–1939 , S. McCall, editor, Oxford University Press, Oxford, 1967, pp. 232–258).
[17] Kalmár, L., Über die Axiomatisierbarkeit des Aussagenkalküls . Acta litterarum ac scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum, vol. 7 (1935), pp. 222243.
[18] Kant, I., Logik: Ein Handbuch zu Vorlesungen , Friedrich Nicolovius, Königsberg, 1800 (English translation: The Jäsche logic , Lectures on Logic, Young, J. M., editor and translator, Cambridge University Press, Cambridge, 1992).
[19] Lawvere, F. W., Adjointness in foundations . Dialectica , vol. 23 (1969), pp. 281296.
[20] Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford University Press, Oxford, 1950 (second edition, 1957).
[21] Shepherdson, J. C., On the interpretation of Aristotelian syllogistic . The Journal of Symbolic Logic, vol. 21 (1956), pp. 137147.
[22] The ASL Committee on Logic and Education, Guidelines for logic education, this Bulletin, vol. 1 (1995), pp. 47.
[23] Wajsberg, M., Ein erweiteter Klassenkalkül . Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 113126.
[24] Whitehead, A. N. and Russell, B., Principia Mathematica, Volume I, Cambridge University Press, Cambridge, 1910.
[25] Wittgenstein, L., Logisch-philosophische Abhandlung . Annalen der Naturphilosophie, vol. 14 (1921), pp. 185262 (English translation by C. K. Ogden: Tractatus logico-philosophicus , Routledge, London, 1922; new translation by D. F. Pears and B. F. McGuinness, Routledge, London, 1961).
[26] Zach, R., Completeness before Post: Bernays, Hilbert, and the development of propositional logic, this Bulletin, vol. 5 (1999), pp. 331366.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed