[1]Aberth, O., Computable Analysis, vol. 15, McGraw-Hill New York, 1980.

[2]Avigad, J. and Brattka, V., *Computability and analysis: the legacy of Alan Turing*, Turing’s Legacy. Cambridge University Press, Cambridge, UK, 2012.

[3]Bienvenu, L., Day, A., Greenberg, N., Kučera, A., Miller, J., Nies, A., and Turetsky, D., *Computing K-trivial sets by incomplete random sets*. this Bulletin, vol. 20 (2014), pp. 80–90.

[4]Bienvenu, L., Downey, R., Greenberg, N., Nies, A., and Turetsky, D., *Characterizing lowness for Demuth randomness*. The Journal of Symbolic Logic, vol. 79 (2014), no. 2, pp. 526–569.

[5]Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., and Turetsky, D., *Coherent randomness tests and computing the K-trivial sets*. Journal of European Mathematical Society, to appear, 2015.

[6]Bienvenu, L., Hölzl, R., Miller, J., and Nies, A., *The Denjoy alternative for computable functions*, STACS, 2012, pp. 543–554.

[7]Bienvenu, L., Hölzl, R., Miller, J., and Nies, A., *Denjoy, Demuth, and Density*. Journal of Mathematical Logic, vol. 1450004 (2014), p. 35.

[8]Bienvenu, L. and Porter, C., *Strong reductions in effective randomness*. Theoretical Computer Science, vol. 459 (2012), pp. 55–68.

[9]Bogachev, V. I., Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.

[10]Borel, E., *Le calcul des intégrales définies*. Journal de Mathématiques pures et appliquées, 6 série, tome 8 (1912), pp. 159–210.

[11]Brattka, V., Hertling, P., and Weihrauch, K., *A tutorial on computable analysis*, New Computational Paradigms: Changing Conceptions of What is Computable (Cooper, S. Barry, Löwe, Benedikt, and Sorbi, Andrea, editors), Springer, New York, 2008, pp. 425–491.

[12]Brattka, V., Miller, J., and Nies, A., *Randomness and differentiability*. Transactions of the AMS, http://dx.doi.org/10.1090/tran/6484. Article electronically published on May 27, 2015. [13]Brodhead, P., Downey, R., and Ng, K. M., *Bounded randomness*, Computation, Physics and Beyond, 2012, pp. 59–70.

[14]Cater, F. S., *Some analysis without covering theorems*. Real Analysis Exchange, vol. 12 (1986/87), no. 2, pp. 533–540.

[15]Ceĭtin, G. S., *Uniform recursiveness of algorithmic operators on general recursive functions and a canonical representation for constructive functions of a real argument*, , 1956, (Russian), pp. 188–189.

[16]Ceĭtin, G. S., *Algorithmic operators in constructive complete separable metric spaces*. Doklady Akademii Nauk, vol. 128 (1959), pp. 49–52, (Russian).

[17]Ceĭtin, G. S., *Algorithmic operators in constructive metric spaces*. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 67 (1962), pp. 295–361, (in Russian, English trans. in AMS Trans. 64, 1967).

[18]Ceĭtin, G. S., On Upper Bounds of Recursively Enumerable Sets of Constructive Real Numbers, Proceedings of the Steklov Institute of Mathematics, vol. 113, 1970, pp. 119–194.

[19]Ceĭtin, G. S., and Zaslavskiĭ, I. D., *Singular coverings and properties of constructive functions connected with them*. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 67 (1962), pp. 458–502, (Russian).

[20]Church, A., *An unsolvable problem of elementary number theory*. American Journal of Mathematics, (1936), pp. 345–363.

[21]Demuth, O., *The differentiability of constructive functions*. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 167–175, (Russian).

[22]Demuth, O., *The Lebesgue measurability of sets in constructive mathematics*. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 463–492, (Russian).

[23]Demuth, O., *The spaces L*_{n} and S in constructive mathematics. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 261–284, (Russian).

[24]Demuth, O., *Constructive pseudonumbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 16 (1975), pp. 315–331, (Russian).

[25]Demuth, O., *The differentiability of constructive functions of weakly bounded variation on pseudo numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 16 (1975), no. 3, pp. 583–599, (Russian).

[26]Demuth, O., *The constructive analogue of the Denjoy-Young theorem on derived numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 17 (1976), no. 1, pp. 111–126, (Russian).

[27]Demuth, O., *The pseudodifferentiability of uniformly continuous constructive functions on constructive real numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 19 (1978), no. 2, pp. 319–333, (Russian).

[28]Demuth, O., *The constructive analogue of a theorem by Garg on derived numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 21 (1980), no. 3, pp. 457–472, (Russian).

[29]Demuth, O., *Borel types of some classes of arithmetical real numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 23 (1982), no. 3, pp. 593–606, (Russian).

[30]Demuth, O., *Some classes of arithmetical real numbers*. Commentationes Mathematicae Universitatis Carolinae, vol. 23 (1982), no. 3, pp. 453–465, (Russian).

[31]Demuth, O., *On the pseudodifferentiability of pseudo uniformly continuous constructive functions from functions of the same type*. Commentationes Mathematicae Universitatis Carolinae, vol. 24 (1983), no. 3, pp. 391–406, (Russian).

[32]Demuth, O., *A notion of semigenericity*. Commentationes Mathematicae Universitatis Carolinae, vol. 28 (1987), no. 1, pp. 71–84.

[33]Demuth, O., *Reducibilities of sets based on constructive functions of a real variable*. Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), no. 1, pp. 143–156.

[35]Demuth, O., *Remarks on the structure of tt-degrees based on constructive measure theory*. Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), no. 2, pp. 233–247.

[36]Demuth, O., *Remarks on Denjoy sets*, Mathematical Logic, Plenum, New York, 1990, pp. 267–280.

[37]Demuth, O., Kryl, R., and Kučera, A., *The use of the theory of functions that are partial recursive relative to numerical sets in constructive mathematics*, Acta Univ. Carolin.—Math. Phys., vol. 19 (1978), no. 1, pp. 15–60, (Russian).

[38]Demuth, O., and Kučera, A., *Remarks on constructive mathematical analysis*, Logic Colloquium ’78 (Mons, 1978), Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam, 1979, pp. 81–129.

[39]Demuth, O., and Kučera, A.*Remarks on* 1-*genericity, semigenericity and related concepts*. Commentationes Mathematicae Universitatis Carolinae, vol. 28 (1987), no. 1, pp. 85–94.

[40]Downey, R., and Hirschfeldt, D., Algorithmic Randomness and Complexity, Springer-Verlag, Berlin, 2010, p. 855.

[41]Downey, R., Hirschfeldt, D., and Nies, A., *Randomness, computability, and density*. SIAM Journal on Computing, vol. 31 (2002), no. 4, pp. 1169–1183.

[42]Figueira, S., Nies, A., and Stephan, F., *Lowness properties and approximations of the jump*. Annals of Pure and Applied Logic, vol. 152 (2008), pp. 51–66.

[43]Franklin, J. N. Y., and Ng, K. M., *Difference randomness*. Proceedings of the American Mathematical Society, vol. 139 (2011), no. 1, pp. 345–360.

[44]Freer, C., Kjos-Hanssen, B., Nies, A., and Stephan, F., *Algorithmic aspects of Lipschitz functions*. Computability, vol. 3 (2014), no. 1, pp. 45–61.

[45]Greenberg, N., and Turetsky, D., *Strong jump-traceability and Demuth randomness*. Proceedings of the London Mathematical Society, vol. 108 (2014), pp. 738–779.

[46]Kalantari, I., and Welch, L., *A blend of methods of recursion theory and topology*. Annals of Pure and Applied Logic, vol. 124 (2003), no. 1, pp. 141–178.

[47]Kautz, S., Degrees of Random Sets, Ph.D. Dissertation, Cornell University, Ithaca, NY, 1991.

[48]Kjos-Hanssen, B., Merkle, W., and Stephan, F., *Kolmogorov complexity and the recursion theorem*. Transactions of the American Mathematical Society, vol. 363 (2011), no. 10, pp. 5465–5480.

[49]Kreisel, G., Lacombe, D., and Shoenfield, J. R., *Partial recursive functionals and effective operations*, Constructivity in Mathematics (Heyting, A., editor), Studies in Logic and the Foundations of Mathematics, North-Holland, 1959, Proceedings of the Colloquium at Amsterdam, 1957, pp. 290–297.

[50]Kurtz, S., Randomness and Genericity in the Degrees of Unsolvability, Ph.D. Dissertation, University of Illinois, Urbana, 1981.

[51]Kushner, B. A., Lectures on Constructive Mathematical Analysis, Translations of Mathematical Monographs, vol. 60, American Mathematical Society, Providence, RI, 1984. Translated from the Russian by E. Mendelson, Translation edited by Leifman, Lev J..

[52]Kushner, B. A., *Markov’s constructive analysis; a participant’s view*. Theoretical Computer Science, vol. 219 (1999), no. 1–2, pp. 267–285, Computability and complexity in analysis (Castle Dagstuhl, 1997).

[53]Kučera, A., and Nies, A., *Demuth randomness and computational complexity*. Annals of Pure and Applied Logic, vol. 162 (2011), pp. 504–513.

[54]Kučera, A., and Nies, A., *Demuth’s path to randomness (extended abstract)*, Proceedings of the 2012 International Conference on Theoretical Computer Science: Computation, Physics and Beyond, WTCS’12, Springer-Verlag, 2012, pp. 159–173.

[55]Levin, L. A., and Zvonkin, A. K., *The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms*. Uspekhi Matematicheskikh Nauk, vol. 25 (1970), no. 6, 156, pp. 85–127.

[56]Markov, A. A., The Theory of Algorithms, vol. 42, , 1954.

[57]Markov, A. A., *Constructive functions*, 4Trudy Matematicheskogo Instituta im. VA Steklova, vol. 52 (1958), pp. 315–348.

[58]Martin-Löf, P., *The definition of random sequences*. Information and Control, vol. 9 (1966), pp. 602–619.

[59]Miller, J., Pi-0-1 Classes in Computable Analysis and Topology, Cornell University, 2002.

[60]Miller, J., and Nies, A., *Randomness and computability: Open questions*, this Bulletin, vol. 12 (2006), no. 3, pp. 390–410.

[61]Miller, J., and Yu, L., *On initial segment complexity and degrees of randomness*. Transactions of the American Mathematical Society, vol. 360 (2008), pp. 3193–3210.

[62]Nerode, A., *General topology and partial recursive functionals*, Summaries of talks at the Cornell Summer Institute of Symbolic Logic, Cornell University, 1957, pp. 247–251.

[63]Nies, A., *Reals which compute little*, Logic Colloquium ’02, , 2002, pp. 260–274.

[64]Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009, pp. 444, .

[65]Nies, A., *Computably enumerable sets below random sets*. Annals of Pure and Applied Logic, vol. 163 (2012), no. 11, pp. 1596–1610.

[66]Nies, A., *Differentiability of polynomial time computable functions*, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) (Mayr, Ernst W. and Portier, Natacha, editors), Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 602–613.

[67]Nies, A., Stephan, F., and Terwijn, S., *Randomness, relativization and Turing degrees*. Journal of Symbolic Logic, vol. 70 (2005), no. 2, pp. 515–535.

[68]Pour-El, M., and Richards, J., Computability in Analysis and Physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989.

[69]Rogers, H. Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

[70]Šanin, N. A., *A constructive interpretation of mathematical judgments*. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 52 (1958), pp. 226–311, (Russian).

[71]Schnorr, C. P., *A unified approach to the definition of random sequences*. Mathematical Systems Theory, vol. 5 (1971), no. 3, pp. 246–258.

[72]Simpson, S., and Cole, J., *Mass problems and hyperarithmeticity*. Journal of Mathematical Logic, vol. 7 (2007), no. 2, pp. 125–143.

[73]Solovay, R., Handwritten Manuscript Related to Chaitin’s Work, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215, 1975.

[74]Terwijn, S., Computability and Measure, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, 1998.

[75]Turing, A., *On computable numbers, with an application to the entscheidungsproblem*. Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1937), pp. 230–265.

[76]Weihrauch, K., Computable Analysis, Springer, Berlin, 2000.

[77]Zambella, D., *Sequences with simple initial segments*, Technical Report ML-1990-05, The Institute for Logic, Language, and Computation (ILLC), University of Amsterdam, Amsterdam, 1990.

[78]Zaslavskiĭ, I. D., *Some properties of constructive real numbers and constructive functions*. Trudy Matematicheskogo Instituta im. VA Steklova, vol. 67 (1962), pp. 385–457.