Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-07T02:25:20.190Z Has data issue: false hasContentIssue false

1.1 Nitrogen Metabolism in the Rumen

Published online by Cambridge University Press:  27 February 2018

P. J. Buttery
Affiliation:
University of Nottingham School of Agriculture, Sutton Bonington, nr. Loughborough, Leicestershire, LH12 5RD
D. Lewis
Affiliation:
University of Nottingham School of Agriculture, Sutton Bonington, nr. Loughborough, Leicestershire, LH12 5RD
Get access

Extract

The concept that the protein reaching the duodenum of a ruminant comprises of two major components, feed and microbial, has been accepted for many years but recently there has been considerable interest in attempts to define and quantify those processes which have an influence on the quantity and quality of this protein. The main reason for this is the desire to predict accurately the total flow of protein to the duodenum when a particular diet is fed. The ability to do this, coupled with a refinement of knowledge on the needs of the animal, are essential steps in improving the efficiency with which ruminants are fed. This review examines some of the factors which control the breakdown of dietary protein and the synthesis of microbial protein in the rumen. The lack of space has prevented discussion of many important topics, for example, the contribution of endogenous proteins to the total protein entering the duodenum. Many reviews have been published in this area (see Egan, 1980; Demeyer and Van Nevel, 1980; others are referred to in the text).

Type
1. Interrelationships Between Nitrogen and Energy Metabolism in Ruminants
Copyright
Copyright © British Society of Animal Production 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council. 1980. Nutrient Requirements of Ruminant Livestock. Commonwealth Agricultural Bureaux, Farnham Royal.Google Scholar
Allen, S. A. and Miller, E. L. 1976. Determination of nitrogen requirement for microbial growth from the effect of urea supplementation of a low -N diet on abomasal N flow and N recycling in wethers and lambs. Br. J. Nutr. 36: 353368.Google Scholar
Annison, E. F. 1956. Nitrogen metabolism in sheep: protein digestion in the rumen. Biochem. J. 64: 705714.Google Scholar
Baldwin, R. L., Koong, L. J. and Ulyatt, M. J. 1977. A dynamic model of ruminant digestion for evaluation of factors affecting nutritive value. Agric. Systems 2: 255288.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., and Cammell, S. B. 1976. The digestion of frozen and dried grass by sheep. J. agric. Sci., Camb. 86:443452.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Pfeffer, E. and Armstrong, D. G. 1969. The effect of drying and ensiling grass on its digestion in sheep: sites of energy and carbohydrate digestion. Br. J. Nutr. 26: 123134.Google Scholar
Ben-Ghedalia, D., McMeniman, N. P. and Armstrong, D. G. 1978. The effect of partially replacing used nitrogen with protein N on N capture in the rumen of sheep fed a purified diet. Br. J. Nutr. 39: 3744.Google Scholar
Black, J. L., Beever, D. E., Faichney, C. J., Howarth, B. R. and Graham, N. M. C. 1981. Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep. Agric. Systems 6:195220.Google Scholar
Buttery, P. J., Manomai-Udom, S. and Lewis, D. 1977. Preliminary investigations of some potential sources of protected methionine derivatives in ruminant rations. J. Sci. Fd Agric. 28:481485.Google Scholar
Chalupa, W. 1976. Degradation of amino acids by the mixed population of the rumen. J. Anim. Sci. 43: 828834.CrossRefGoogle ScholarPubMed
Chamberlain, D. G. and Thomas, P. C. 1979. Ruminal nitrogen metabolism and the passage of amino acids to the duodenum in sheep receiving diets containing hay and concentrates. J. Sci. Fd Agric. 30: 677686.Google Scholar
Cheng, K. J. and Costerton, J. W. 1980. Adherent rumen bacteria — their role in the digestion of plant material, urea and epithelial cells. In Digestion Physiology and Metabolism in Ruminants (ed. Ruckebusch, Y. and Thivend, P.), pp. 227250. MTP Press Ltd., Lancaster.Google Scholar
Coleman, G. S. and Sandford, D. C. 1979. Engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo . J. agric. Sci., Camb. 92: 729742.Google Scholar
Crawford, B. A., Hoover, W. H., Sniffen, C. J. and Crooker, C. P. 1978. Degradation of feedstuff nitrogen in the rumen vs. nitrogen solubility in three solvents. J. Anim. Sci. 46: 17681775.CrossRefGoogle Scholar
Czerkawski, J. W. 1978. Re-assessment of efficiency of synthesis of microbial matter in the rumen. J. Dairy Sci. 61: 12611273.Google Scholar
Demeyer, D. I. and Van Nevel, C. J. 1980. Nitrogen exchanges in the rumen. Proc. Nutr. Soc. 39: 8995.Google Scholar
Egan, A. R. 1980. Host animal-rumen relationships. Proc. Nutr. Soc. 39:7987.Google Scholar
Englehardt, W., Hinderer, S., and Wipper, E. 1978. Factors affecting the endogenous urea-N secretion and utilization in the gastro-intestinal tract. In Ruminant Digestion and Feed Evaluation (ed. Osbourn, D. F., Beever, D. E. and Thomson, D. J.), pp. 4.14.12. Agricultural Research Council, London.Google Scholar
Erfle, J. D., Sauer, F. D. and Mahadevan, S. 1977. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 60:10641072.Google Scholar
Ganev, G., Ørskov, E. R. and Smart, R. 1979. The effect of roughage or concentrate feeding and rumen retention tissue on total degradation of protein in the rumen. J. agric. Sci., Camb. 93: 651656.Google Scholar
Grovum, W. L. and Williams, V. J. 1977. Rate of passage of digesta in sheep. 3. Differential rate of passage of water and dry matter from reticulo-rumen, abomasum and caecum and proximal colon. Br. J. Nutr. 30:231240.Google Scholar
Hagemeister, H., Lupping, W. and Kaufmann, W. 1981. Microbial protein synthesis and digestion in the high yielding dairy cow. In Recent Advances in Animal Nutrition 1980 (ed. Haresign, W.), pp. 6784. Butterworths, London.Google Scholar
Harrison, D. G. and McAllan, A. B. 1980. Factors affecting microbial growth yields in the retículo rumen. In Digestion Physiology and Metabolism in Ruminants (ed. Ruckebusch, Y. and Thivend, P.), pp. 205226. MTP Press Ltd., Lancaster.Google Scholar
Harrison, D. G., Beever, D. E. and Osbourn, D. F. 1979. The contribution of protozoa to the protein entering the duodenum of sheep. Br. J. Nutr. 41:521527.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. and Osbourn, D. F. 1975. Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J. agric. Sci., Camb. 85: 92101.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. and Osbourn, D. F. 1976. Manipulation of fermentation in the rumen. J. Sci. Fd Agric. 27: 617620.CrossRefGoogle ScholarPubMed
Hume, I. D. 1970. Synthesis of microbial protein in the rumen. Aust. J. agric. Res. 21:305314.Google Scholar
Ishaque, M., Thomas, P. C. and Rook, J. A. F. 1971. Consequences to the host of changes in rumen microbial activity. Nature (London) 231: 253256.Google Scholar
Jenkinson, H., Buttery, P. J., and Lewis, D. 1979. Assimilation of ammonia by Bacteroides amylophilus in chemical cultures. J. Gen. Microbiol. 113: 305313.Google Scholar
Kang-Meznarich, J. H. and Broderick, G. A. 1981. Effects of incremental urea supplementation on ruminai ammonia concentration and bacterial protein formation. J. Anim. Sci. 51: 422431.Google Scholar
Kennedy, P. M. 1980. The effects of dietary sucrose and the concentrations of plasma urea and rumen ammonia on the degradation of urea in the gastrointestinal tract of cattle. Br. J. Nutr. 43:125140.Google Scholar
Kennedy, P. M., Christopherson, R. J. and Milligan, L. P. 1976. The effect of cold exposure of sheep on digestion rumen turnover time and efficiency of microbial synthesis. Br. J. Nutr. 36: 231242.Google Scholar
Kennedy, P. M. and Milligan, L. P. 1978a. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. Br. J. Nutr. 39:105117.Google Scholar
Kennedy, P. M. and Milligan, L. P. 1978b. Transfer of urea from the blood to the rumen of sheep. Br. J. Nutr. 40:149154.Google Scholar
Leonard, M. C., Buttery, P. J. and Lewis, D. 1977. The effects on glucose metabolism of feeding a high urea diet to sheep. Br. J. Nutr. 38:455462.CrossRefGoogle ScholarPubMed
Ling, J. R. 1976. Nitrogen metabolism in the rumen. PhD Thesis, Univ. Nottingham.Google Scholar
Ling, J. R. and Buttery, P. J. 1978. The simultaneous use of ribonucleic acid, 35S, 2,6—diamino-pimelic acid and 2-aminoethylphosphonic acid as markers of microbial nitrogen entering the duodenum of sheep. Br. J. Nutr. 29:165179.Google Scholar
McDonald, I. 1981. Revised model for the estimation of protein degradability in the rumen. J. agric. Sci., Camb. 96:251252.CrossRefGoogle Scholar
MacGregor, C. A., Sniffen, C. J. and Hoover, W. H. 1978. Amino acid profiles of total and soluble protein in feedstuffs commonly fed to ruminants. J. Dairy Sci. 61:566573.Google Scholar
McMeniman, N. P., Ben-Ghedali, A.D. and Armstrong, D. G. 1976. Nitrogen energy interactions in rumen fermentation. In Protein Metabolism and Nutrition (ed. Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D. and Neale, R. J.), pp. 217229. Butterworths, London.Google Scholar
McMeniman, N. P., Ben-Ghedalia, D. and Elliot, R. 1976. Sulphur and cystine incorporation into rumen microbial protein. Br. J. Nutr. 36: 571574.Google Scholar
MacRae, J. C. 1976. Utilization of the protein of green forage by ruminants at pasture. In From Plant to Animal Protein (ed. Sutherland, T. M. et al), pp. 9398. University of New England, Armidale.Google Scholar
MacRae, J. C. and Reeds, P. J. 1980. Prediction of protein deposition in ruminants. In Protein Deposition in Animals (ed. Buttery, P. J. and Lindsay, D. B.), pp. 225250. Butterworths, London.Google Scholar
MacRae, J. C., Ulyatt, M. J., Pearce, P. D. and Hendtlass, J. 1972. Quantitative intestinal digestion of nitrogen in sheep given formaldehyde-treated and untreated casein supplements. Br. J. Nutr. 27: 3950.CrossRefGoogle ScholarPubMed
Maeng, W. J. and Baldwin, R. L. 1976. Factors influencing rumen microbial growth rates and yields. J. Dairy Sci. 59: 643647.CrossRefGoogle ScholarPubMed
Maeng, W. J., van Nevel, C. J., Baldwin, R. L. and Morris, J. G. 1976. Rumen microbial growth rates and yields: effect of amino acids and protein. J. Dairy Sci. 59: 6878.CrossRefGoogle ScholarPubMed
Mahadevan, S., Erfle, J. D. and Sauer, F. D. 1979. Colorimetrie method for the determination of proteolytic degradation of feed proteins by rumen microorganisms. J. Anim. Sci. 48:947953.Google Scholar
Mahadevan, S., Erfle, J. D. and Sauer, F. D. 1980. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. J. Anim. Sci. 50: 723728.CrossRefGoogle ScholarPubMed
Mangan, J. L. 1972. Quantitative studies on nitrogen metabolism in the bovine rumen. Br. J. Nutr. 27: 261283.Google Scholar
Mathers, J. C. and Miller, E. L. 1981. Quantitative studies of food protein degradation and the energetic efficiency of microbial protein synthesis in the rumen of sheep given chopped lucerne and rolled barley. Br. J. Nutr. 45:587604.Google Scholar
Mehrez, A. Z., Ørskov, E. R. and McDonald, I. 1977. Rates of ruminai fermentation in relation to ammonia concentration. Br. J. Nutr. 38: 437443.CrossRefGoogle Scholar
Mehrez, A. Z., Ørskov, E. R. and Opstredt, J. 1980. Processing factors affecting degradability of fishmeal in the rumen. J. Anim. Sci. 50: 737744.Google Scholar
Miller, E. L. 1973. Evaluation of foods as sources of nitrogen and amino acids. Proc. Nutr. Soc. 32: 7984.Google Scholar
Nolan, J. V. 1975. Quantitative models of nitrogen metabolism in sheep. In Digestion and Metabolism in the Ruminant (ed. McDonald, I. W. and Warner, A. C. I.), pp. 416431. University of New England, Armidale.Google Scholar
Nolan, J. V. and Leng, R. A. 1972. Dynamic aspects of ammonia and urea metabolism in sheep. Br. J. Nutr. 27: 177194.Google Scholar
Nolan, J. V., Norton, B. W. and Leng, R. A. 1976. Further studies of the dynamics of nitrogen metabolism in sheep. Br. J. Nutr. 35:123147.Google Scholar
Nugent, J. H. A. and Mangan, J. L. 1981. Characteristics of the rumen proteolysis of fraction 1 (185) leaf protein from lucerne (Medicago sativa, L.). Br. J. Nutr. 46:3958.Google Scholar
Offer, N. W., Axford, R. F. E. and Evans, R. A. 1978. The effect of dietary energy source on nitrogen metabolism in the rumen of sheep. Br. J. Nutr. 40: 3544.Google Scholar
Oldham, J. D. 1981. Amino acid requirements for lactation in high yielding dairy cows. In Recent Advances in Animal Nutrition 1980 (ed. Haresign, W.), pp. 3366. Butterworths, London.Google Scholar
Oldham, J. D., Buttery, P. J., Swan, H. and Lewis, D. 1977. Interactions between dietary carbohydrate and nitrogen and digestion for sheep. J. agric. Sci., Camb. 89:467479.CrossRefGoogle Scholar
Ørskov, E. R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from adjusted rates of passage. J. agric. Sci., Camb. 92: 499503.Google Scholar
Ortega, M. E., Stern, M. D. and Satter, L. D. 1979. The effect of rumen ammonia concentration on dry matter disappearance in situ . J. Dairy Sci. 62 (Suppl. 1):76(Abstr.).Google Scholar
Pisulewski, P. M., Okorie, A., Buttery, P. J., Haresign, W. and Lewis, D. 1981. Ammonia concentration and protein synthesis in the rumen. J. Sci. Fd Agric. 32:759766.Google Scholar
Poos, M., Klopfenstein, T., Briton, R. A. and Olson, D. G. 1980a. A comparison of laboratory techniques to predict ruminai degradation of protein supplements, p. 389 in Abstr. 72nd Ann. Mtg. Am. Soc. Anim. Sci. Google Scholar
Poos, M., Klopfenstein, T., Briton, R. A. and Olson, D. G. 1980b. An enzymic technique to determine ruminai protein degradation. J. Dairy Sci. 63 (Suppl. 1): 142 (Abstr.).Google Scholar
Prins, R. A. and Clarke, R. T. J. 1980. Microbial ecology of the rumen. In Digestive Physiology and Metabolism in Ruminants (ed. Ruckebusch, Y. and Thivend, P.), pp. 179204, MTP Press Ltd., Lancaster.Google Scholar
Rohr, K., Brandt, M., Castrillo, O., Lebzien, P. and Assmus, G. 1979. Quoted by Hagemeister et al., 1981.Google Scholar
Russell, J. B. and Hespell, R. B. 1981. Microbial rumen fermentation. J. Dairy Sci. 64: 11541169.Google Scholar
Salter, D. N., Daneshvar, K. and Smith, R. H. 1979. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea- containing diets. Br. J. Nutr. 41: 197209.Google Scholar
Satter, L. D. and Slyter, L. L. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro . Br. J. Nutr. 32: 199208.Google Scholar
Schaefer, D. M., Davis, C. L. and Bryant, M. P. 1980. Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci. 63: 12481263.Google Scholar
Scheifinger, C., Russel, N. and Chalupa, W. 1976. Degradation of amino acid by pure cultures of rumen bacteria. J. Anim. Sci. 43: 821828.Google Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. and MacRae, J. C. 1979. Estimation of microbial protein in duodenal digesta. Ann. Rech. Vet. 10:286287.Google Scholar
Somers, M. 1961. Factors influencing the secretion of nitrogen in sheep saliva. 4. The influence of injected urea on the quantitative recovery of urea in the parotid saliva and urinary excretion of sheep. Aust. J. Exp. Biol. Med. Sci. 39:145156.Google Scholar
Stern, M. D. and Hoover, W. J. 1979. Methods for determining and factors affecting microbial protein synthesis. A review. J. Anim. Sci. 49:15901603.Google Scholar
Sutton, J. D. 1980. Digestion and end product formation in the rumen from production rations. In Digestive Physiology and Metabolism in Ruminants (ed. Ruckebusch, Y. and Thivend, P.), pp. 271290. MTP Press Ltd., Lancaster.Google Scholar
Tamminga, S., van der Koelen, C. J. and Van Vuuren, A. M. 1979. Effect of level of feed intake on nitrogen entering the small intestine of dairy cows. Livest. Prod. Sci. 6:255261.CrossRefGoogle Scholar
Tamminga, S. 1979. Quoted by Hagemeister et al., 1981.Google Scholar
Uden, P., Colucii, P. E. and Van Soest, P. J. 1980. Investigation of chromium, cerium and cobalt as markers in digesta rate passage studies. J. Sci. Fd Agric. 31:625632.Google Scholar
Wilson, A. D. 1963. The effect of diet on the secretion of saliva by sheep. Aust. J. agric. Res. 14: 680689.Google Scholar