Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T16:10:23.571Z Has data issue: false hasContentIssue false

Zinc and calcium apparent absorption from an infant cereal: a stable isotope study in healthy infants

Published online by Cambridge University Press:  09 March 2007

Lena Davidsson
Affiliation:
Nestec Ltd, Nestlé Research Center, PO Box 44, CH-1000 Lausanne, Switzerland
Jill Mackenzie
Affiliation:
Department of Child Health, University of Aberdeen, Foresterhill, Aberdeen AB9 2ZD
Peter Kastenmayer
Affiliation:
Nestec Ltd, Nestlé Research Center, PO Box 44, CH-1000 Lausanne, Switzerland
Peter J. Aggett
Affiliation:
Department of Child Health, University of Aberdeen, Foresterhill, Aberdeen AB9 2ZD
Richard F. Hurrell
Affiliation:
Nestec Ltd, Nestlé Research Center, PO Box 44, CH-1000 Lausanne, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fractional apparent absorption of Zn and Ca from a wheat-milk-based infant cereal was studied in six healthy infants (18-30 weeks old). Mineral absorption was measured by a stable-isotope technique based on faecal excretion of the isotopes. Each test meal (40 g cereal) was extrinsically labelled with 70Zn and 42Ca before intake. All faecal material passed during the 21 d following intake of the labelled test meal was collected on trace-element-free nappies. Individual stool samples were analysed for their content of ‘OZn and 42Ca by thermal ionization mass spectrometry. Apparent absorption was calculated as intake minus total faecal excretion of the isotopes over 68-92 h after administration. The fractional apparent absorption values for Zn and Ca were 33.9 (SD 164) % (range 19.2-639 %) and 53.5 (SD 12.6) %) (range 36.7-71.7 %) respectively. Re-excretion of absorbed 70Zn (> 68-92 h to 21 d after intake of the labelled meal) was 044 (SD 038) %] of administered dose while only one infant re-excreted detectable amounts of 42Ca (1.74%) of administered dose). The analysis of individual stool samples confirmed that 72 h is a sufficient time period for complete collections of non-absorbed isotopes in faecal material from infants during the weaning period and that re-excretion of initially absorbed 70Zn and 42Ca (> 68-92 h to 21 d after intake of the labelled meal) is negligible.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Abrams, S. A., Esteban, N. V., Vieira, N. E., Sidbury, J. B., Specker, B. L. & Yergey, A. L. (1992). Developmental changes in calcium kinetics in children assessed using stable isotopes. Journal of Bone and Mineral Research 7, 287293.CrossRefGoogle ScholarPubMed
Abrams, S. A., Esteban, N. V., Vieira, N. E. & Yergey, A. L. (1991). Dual tracer stable isotopic assessment of calcium absorption and endogenous fecal excretion in low birth weight infants. Pediatric Research 29, 615618.CrossRefGoogle ScholarPubMed
Abrams, S. A., Yergey, A. L., Schanler, R., Vieira, N. E. & Welch, T. R. (1994). Hypercalciuria in premature infants receiving high mineral-containing diets. Journal of Pediatric Gastroenterology and Nutrition 18, 2024.Google ScholarPubMed
American Academy of Pediatrics Committee on Nutrition (1980). On the feeding of supplemental foods to infants. Pediatrics 65, 11781181.CrossRefGoogle Scholar
Clark, B. J. & Laing, S. C. (1990). Infant feeding: a review of weaning. Journal of Human Nutrition and Dietetics 3, 1118.CrossRefGoogle Scholar
Davidsson, L. (1994). Minerals and trace elements in infant nutrition. Acta Paediatrica Suppl 395, 3842.CrossRefGoogle Scholar
Davidsson, L., Kastenmayer, P. & Hurrell, R. F. (1994). Sodium iron EDTA (NaFe(III)EDTA) as a food fortificant: the effect on the absorption and retention of zinc and calcium in women. American Journal of Clinical Nutrition 60, 231237.CrossRefGoogle ScholarPubMed
Dixon, W. J. & Massey, F. J. (1969). Introduction to Statistical Analysis, pp. 328330. New York: McGraw Hill.Google Scholar
Egan, C. B., Smith, F. G., Houk, R. S. & Serfass, R. E. (1991). Zinc absorption in women: comparison of intrinsic and extrinsic stable-isotope labels. American Journal of Clinical Nutrition 53, 547553.CrossRefGoogle ScholarPubMed
Ehrenkranz, R. A., Ackerman, B. A., Nelli, G. M. & Janghorbani, M. (1984). Determination with stable isotopes of the dietary bioavailability of zinc in premature infants. American Journal of Clinical Nutrition 40, 7281.CrossRefGoogle ScholarPubMed
Ehrenkranz, R. A., Ackerman, B. A., Nelli, G. M. & Janghorbani, M. (1985). Absorption of calcium in premature infants as measured with a stable isotope 46-Ca extrinsic tag. Pediatric Research 19, 178184.CrossRefGoogle Scholar
Ehrenkranz, R. A., Gettner, P. A., Nelli, G. M., Sherwonit, E. A., William, J. E., Ting, B. T. G. & Janghorbani, M. (1989). Zinc and copper nutritional studies in very low birth weight infants: comparison of stable isotopic extrinsic tag and chemical balance methods. Pediatric Research 26, 298307.CrossRefGoogle ScholarPubMed
Götz, A. & Heumann, K.G. (1987). Heavy metal trace determination with a compact thermal ionization quadrupole mass spectrometer. Part 2. Analysis of food samples. Fresenius Zeitschrft für Analytische Chemie 326, 118122.CrossRefGoogle Scholar
Hervada, A. R. & Newman, D. R. (1992). Weaning: historical perspectives, practical recommendations, and current controversies. Current Problems in Pediatrics 227, 223240.CrossRefGoogle Scholar
Hillman, L. S., Tack, E., Covell, D. G., Vieira, N. E. & Yergey, A. L. (1988). Measurement of true calcium absorption in premature infants using intravenous 46Ca and oral 44Ca. Pediatric Research 23, 589594.CrossRefGoogle ScholarPubMed
International Union of Pure and Applied Chemistry (1991). Isotopic composition of elements 1989. Pure and Applied Chemistry 63, 991-1002.Google Scholar
Janghorbani, M., Young, V. R. & Ehrenkranz, R. A. (1985). Isotopic methods in the study of mineral metabolism of infants with special reference to stable isotopes. In Trace Elements in Nutrition of Children. Nestlé Nutrition Workshop Series, pp. 6386 [Chandra, R. K., editor]. New York: Raven Press.Google Scholar
Johnson, P. E. & Canfield, W. K. (1989). Stable zinc and copper absorption in free-living infants fed breast milk or formula. Journal of Trace Elements in Experimental Medicine 2, 285295.Google Scholar
Liu, Y.-M., Neal, P., Ernst, J., Weave, C., Rickard, K., Smith, D. L. & Lemons, J. (1989). Absorption of calcium and magnesium from fortified human milk by very low birth weight infants. Pediatric Research 25, 496502.CrossRefGoogle ScholarPubMed
Martin, B. R., Weaver, C. M. & Smith, D. L. (1989). Calcium absorption from milk vs. calcium carbonate in college age women using stable isotopes. FASEB Journal 3, A771 Abstr.Google Scholar
Moore, L. J. & Machlan, L. A. (1972). High accuracy determination of calcium in blood serum by isotope dilution. Mass Spectrometry 44, 22912296.Google ScholarPubMed
Moore, L. J., Machlan, L. A., Lim, M. O., Yergey, A. L. & Hansen, J. W. (1985). Dynamics of calcium metabolism in infancy and childhood. I. Methodology and quantification in the infant. Pediatric Research 19, 329334CrossRefGoogle ScholarPubMed
Serfass, R. E., Ziegler, E. E., Edwards, B. B. & Houk, R. S. (1989). Intrinsic and extrinsic stable isotopic zinc absorption by infants from formulas. Journals of Nutrition 119, 16611669.Google ScholarPubMed
Turnlund, J. R. (1991). Bioavailability of dietary minerals to humans: the stable isotope approach. Critical Reviews of Food Science and Nutrition 30, 387396.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Michel, M. C., Keyes, W. R., King, J. C. & Margen, S. (1982). Use of enriched stable isotopes to determine zinc and iron absorption in elderly men. American Journal of Clinical Nutrition 35, 10331040.CrossRefGoogle ScholarPubMed
Weaver, C. M., Heaney, R. P., Martin, B. R. & Fitzsimmons, M. L. (1992). Extrinsic vs intrinsic labeling of the calcium in whole-wheat flour. American Journal of Clinical Nutrition 55, 452454.CrossRefGoogle ScholarPubMed
Yergey, A. L., Abrams, S. A., Vieira, N. E., Eastell, R., Hillman, L. S. & Covell, D. G. (1990). Recent studies of human calcium metabolism using stable isotopic tracers. Canadian Journal of Physiology and Pharmacology 68, 973976.CrossRefGoogle ScholarPubMed
Ziegler, E. E., Serfass, R. E., Nelson, S. E., Figueroa-Colon, R., Edwards, B. B., Houk, R. S. & Thompson, J. J. (1989). Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70-Zn as an extrinsic tag. Journal of Nutrition 119, 1647.CrossRefGoogle Scholar