Skip to main content Accessibility help
×
Home

Weaning affects lipoprotein lipase activity and gene expression in adipose tissues and in masseter but not in other muscles of the calf

  • Jean-François Hocquette (a1), Benoît Graulet (a1), Michel Vermorel (a1) and Dominique Bauchart (a1)

Abstract

The nutritional and physiological modifications that occur during the weaning period induce adaptations of tissue metabolism in all mammal species. Among the adaptations due to weaning in ruminants, the regulation of lipoprotein lipase (LPL) activity, one of the rate-limiting steps of fatty acid utilization by tissues, was still unknown. The present study aimed at comparing LPL activity and gene expression in the heart, seven skeletal muscles and three adipose tissue sites between two groups of seven preruminant (PR) or ruminant (R) calves having a similar age (170 d), similar empty body weight (194 kg) at slaughter, and similar net energy intake from birth onwards. Triacylglycerol content of adipose tissues was 16 % lower in R than in PR calves, (P<0·01). This could be partly the result from a lower LPL activity (-57 %, P<0·01). LPL mRNA levels were also lower in R calves (-48 % to -68 %, P<0·01) suggesting a pretranslational regulation of LPL activity. Activity and mRNA levels of LPL did not differ significantly in the heart and skeletal muscles except in the masseter in which LPL activity and mRNA levels were higher (+50 % and +120 % respectively, P<0·01) in the R calves. Regulation of LPL in masseter could be explained by the high contractile activity of this muscle after weaning due to solid food chewing. In conclusion, weaning in the calf affects LPL activity and expression in adipose tissues, but not in skeletal muscles except the masseter.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Weaning affects lipoprotein lipase activity and gene expression in adipose tissues and in masseter but not in other muscles of the calf
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Weaning affects lipoprotein lipase activity and gene expression in adipose tissues and in masseter but not in other muscles of the calf
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Weaning affects lipoprotein lipase activity and gene expression in adipose tissues and in masseter but not in other muscles of the calf
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Jean-François Hocquette, fax +33 4 73 62 46 39, email hocquet@clermont.inra.fr

References

Hide All
Ailhaud, G, Amri, EZ & Grimaldi, PA (1996) Fatty acids and expression of lipid-related genes in adipose cells. Proceedings of the Nutrition Society 55, 151154.
Amri, EZ, Teboul, L, Vannier, C, Grimaldi, PA & Ailhaud, G (1996) Fatty acids regulate the expression of lipoprotein lipase gene and activity in preadipose and adipose cells. Biochemical Journal 314, 541546.
Auwerx, J, Schoonjans, K, Fruchart, JC & Staels, B (1996) Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 124 Suppl., S29S37.
Bauchart, D (1993) Lipid absorption and transport in ruminants. Journal of Dairy Science 76, 38643881.
Bonnet, M, Faulconnier, Y, Fléchet, J, Hocquette, JF, Leroux, C, Langin, D, Martin, P & Chilliard, Y (1998) Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed ewes and cows. Reproduction Nutrition and Development 38, 297307.
Braun, JEA & Severson, DL (1992) Regulation of synthesis, processing and translocation of lipoprotein lipase. Biochemical Journal 287, 337347.
Chilliard, Y & Robelin, J (1985) Activité lipoprotéine-lipasique de différents dépôts adipeux et ses relations avec la taille des adipocytes chez la vache tarie en cours d'engraissement ou en début de lactation (Lipoprotein lipase activity in different adipose tissues and relations with the adipocyte size in the dry cow during fattening or at the beginning of the lactation). Reproduction Nutrition Développement 25, 287293.
Cooper, DA, Stein, JC, Strieleman, PJ & Bensadoun, A (1989) Avian adipose lipoprotein lipase: cDNA sequence and reciprocal regulation of mRNA levels in adipose and heart. Biochimica et Biophysica Acta 1008, 92101.
Durand, D & Bauchart, D (1986) Variations nycthémérales de la lipémie et de la glycémie au niveau des voies afférentes et éfférentes du foie chez le veau préruminant (Nycthemeral variations in lipaemia and glycaemia in afferant and efferant hepatic vessels in the preruminant calf). Reproduction Nutrition Development 26, 371372.
Faulconnier, Y, Bonnet, M, Bocquier, F, Leroux, C, Hocquette, JF, Martin, P & Chilliard, Y (1999) Régulation du métabolisme lipidique des tissus adipeux et musculaires chez le ruminant. Effet du niveau alimentaire et de la photopériode (Regulation of lipid metabolism of adipose tissue and muscle in ruminants. Effects of feeding level and photoperiod). INRA Productions Animales 12, 287300.
Ferré, P (1999) Regulation of gene expression by glucose. Proceedings of the Nutrition Society 58, 621623.
Girard, J, Ferré, P, Pégorier, JP & Duée, PH (1992) Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiological Reviews 72, 507562.
Hamilton, MT, Etienne, J, McClure, W, Pavey, BS & Holloway, AK (1998) Role of local contractile activity and muscle fiber type on LPL regulation during exercise. American Journal of Physiology 275, E1016E1022.
Hocquette, JF & Bauchart, D (1999) Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals. Reproduction Nutrition Development 39, 2748.
Hocquette, JF, Castiglia-Delavaud, C, Graulet, B, Ferré, P, Picard, B & Vermorel, M (1997) Weaning marginally affects glucose transporter (GLUT4) expression in calf muscles and adipose tissues. British Journal of Nutrition 78, 251271.
Hocquette, JF, Graulet, B, Castiglia-Delavaud, C, Bornes, F, Lepetit, N & Ferré, P (1996) Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment. International Journal of Biochemistry and Cell Biology 28, 795806.
Hocquette, JF, Graulet, B & Olivecrona, T (1998 a) Lipoprotein lipase activity and mRNA levels in bovine tissues. Comparative Biochemistry and Physiology B 121, 201212.
Hocquette, JF, Ortigues-Marty, I, Pethick, DW, Herpin, P & Fernandez, X (1998 b) Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livestock Production Science 56, 115143.
Hugi, D & Blum, JW (1997) Changes of blood metabolites and hormones in breeding calves associated with weaning. Journal of Veterinary Medecine - Series A 44, 99108.
Jarrige, R (1989) Ruminant Nutrition Recommended Allowances and Feed Tables, Paris: Institut National de la Recherche Agronomique, pp. 389.
Jump, DB & Clarke, SD (1999) Regulation of gene expression by dietary fat. Annual Review of Nutrition 19, 6390.
Kauffman, RG, Habel, RE, Smulders, FJM, Hartman, W & Bergstrom, PL (1990) Recommended terminology for the muscle commonly designated longissimus dorsi. Meat Science 28, 259265.
Kern, PA, Ranganathan, G, Yukht, A, Ong, JM & Davis, RC (1996) Translational regulation of lipoprotein lipase by thyroid hormone is via a cytoplasmic repressor that interacts with the 3′ untranslated region. Journal of Lipid Research 37, 23322340.
Kirchgessner, TG, Svenson, KL, Lusis, AJ & Schotz, MC (1987) The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. Journal of Biological Chemistry 262, 84638466.
Kouame, KG, Troccon, JL, Patureau-Mirand, P, Journet, M & Pion, R (1984) Nutrition des veaux au cours du sevrage. I Evolution de la consommation d'aliments et des concentrations sanguines de divers métabolites énergétiques (Calf nutrition during the weaning period. I. Variations in feed intake and blood levels of energetic metabolites). Annales de Zootechnie 33, 427444.
Olivecrona, T, Bengtsson-Olivecrona, G, Chajek-Shaul, T, Carpendier, Y, Deckelbaum, R, Hultin, M, Peterson, J, Patsch, J & Vilaro, S (1991) Lipoprotein lipase. Sites of synthesis and sites of action. Atherosclerosis Review 22, 2125.
Ong, JM, Kirchgessner, TG, Schotz, MC & Kern, PA (1988) Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. Journal of Biological Chemistry 263, 1293312938.
Pearce, J & Unsworth, EF (1980) The effects of diet on some hepatic enzyme activities in the pre-ruminant and ruminating calf. Journal of Nutrition 110, 255261.
Pethick, DW & Dunshea, FR (1993) Fat metabolism and turnover. In Quantitative Aspects of Ruminants Digestion and Metabolism, pp. 291311 [Forbes, JM and France, J, editors]. Wallingford: CAB International.
Picard, B, Gagnière, H & Geay, Y (1996) Contractile differenciation of bovine masseter muscle. Basic and Applied Myology 6, 361372.
Pykalisto, O, Goldberg, AP & Brunzell, JD (1976) Reversal of decreased human adipose tissue lipoprotein lipase and hypertriglyceridemia after treatment of hypothyroidism. Journal of Clinical Endocrinology and Metabolism 43, 591600.
Quigley, JD, Caldwell, LA, Sinks, GD & Heitmann, RN (1991 a) Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. Journal of Dairy Science 74, 250257.
Quigley, JD, Smith, ZP & Heitmann, RN (1991 b) Changes in plasma volatile fatty acids in response to weaning and feed intake in young calves. Journal of Dairy Science 74, 258263.
Raclot, T, Dauzats, M & Langin, D (1998) Regulation of hormone-sensitive lipase expression by glucose in 3T3-F442A adipocytes. Biochemical and Biophysical Research Communications 245, 510513.
Raynolds, MV, Awald, PD, Gordon, DF, Gutierrez-Hartmann, A, Rule, DC, Wood, WM & Eckel, RH (1990) Lipoprotein lipase gene expression in rat adipocytes is regulated by isoprotenerol and insulin through different mechanisms. Molecular Endocrinology 4, 14161422.
Schoonjans, K, Peinado-Onsurbe, J, Lefebvre, AM, Heyman, RA, Briggs, M, Deeb, S, Staels, B & Auwerk, J (1996) PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO Journal 15, 53365348.
Semenkovich, CF, Chen, SH, Wims, M, Luo, CC, Li, WH & Chan, L (1989 a) Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation and evolution. Journal of Lipid Research 30, 423431.
Semenkovich, CF, Wims, M, Noe, L, Etienne, J & Chan, L (1989 b) Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. Journal of Biological Chemistry 264, 90309038.
Senda, M, Oka, K, Brown, WV, Qasba, PK & Furuichi, Y (1987) Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase. Proceedings of the National Academy of Sciences, USA 84, 43694373.
Van der Lee, KAJM, Vork, MM, De Vries, JE, Willemsen, PHM, Glatz, JFC, Reneman, RS, Van der Vusse, GJ & Van Bilsen, M (2000) Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. Journal of Lipid Research 41, 4147.
van Houtert, MFJ (1993) The production and metabolism of volatile fatty acids by ruminants fed roughages: A review. Animal Feed Science and Technology 43, 189225.
Vermorel, M, Bouvier, JC, Thivend, P & Toullec, R (1974) Utilisation énergétique des aliments d'allaitement par le veau préruminant á l'engrais á différents poids (Energy utilization of liquid milk replacers by veal calves). In Proceedings of the 6th Symposium on Energy Metabolism, Stuggart (Germany), EAAP Publication no. 14, pp. 143146 [Menke, KH, Lantzch, H-J and Reichl, JR, editors]. Universitat Hohenheim, Dokumentations-stelle, Stuggart, Germany: EAAP.
Wion, KL, Kirchgessner, TG, Lusis, AJ, Schotz, MC & Lawn, RM (1987) Human lipoprotein lipase complementary DNA sequence. Science 235, 16381641.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed