Skip to main content Accessibility help
×
Home

Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver

  • Shuhei Ebara (a1), Motoyuki Nakao (a2), Mayuko Tomoda (a2), Ryoichi Yamaji (a2), Fumio Watanabe (a3), Hiroshi Inui (a2) and Yoshihisa Nakano (a2)...

Abstract

The aim of the present study was to elucidate the mechanism of the vitamin B12 deficiency-induced changes of the serine dehydratase (SDH) and tyrosine aminotransferase (TAT) activities in the rat liver. When rats were maintained on a vitamin B12-deficient diet, the activities of these two enzymes in the liver were significantly reduced compared with those in the B12-sufficient control rats (SDH 2·8 (sd 0·56) v. 17·5 (sd 6·22) nmol/mg protein per min (n 5); P < 0·05) (TAT 25·2 (sd 5·22) v. 41·3 (sd 8·11) nmol/mg protein per min (n 5); P < 0·05). In the B12-deficient rats, the level of SDH induction in response to the administration of glucagon and dexamethasone was significantly lower than in the B12-sufficient controls. Dexamethasone induced a significant increase in TAT activity in the primary culture of the hepatocytes prepared from the deficient rats, as well as in the cells from the control rats. However, a further increase in TAT activity was not observed in the hepatocytes from the deficient rats, in contrast to the cells from the controls, when glucagon was added simultaneously with dexamethasone. The glucagon-stimulated production of cAMP was significantly reduced in the hepatocytes from the deficient rats relative to the cells from the control rats. Furthermore, the glucagon-stimulated adenylyl cyclase activity in the liver was significantly lower in the deficient rats than in the controls. These results suggest that vitamin B12 deficiency results in decreases in SDH and TAT activities correlated with the impairment of the glucagon signal transduction through the activation of the adenylyl cyclase system in the liver.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Shuhei Ebara, fax +81 79 292 9376, email ebara@shse.u-hyogo.ac.jp

References

Hide All
1Riedel, B, Fiskerstrand, T, Refsum, H & Ueland, PM (1999) Co-ordinate variations in methylmalonyl-CoA mutase and methionine synthase, and the cobalamin cofactors in human glioma cells during nitrous oxide exposure and the subsequent recovery phase. Biochem J 341, 133138.
2Suormala, T, Baumgartner, MR, Coelho, D, et al. (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279, 4274242749.
3Oltean, S & Banerjee, R (2003) Nutritional modulation of gene expression and homocysteine utilization by vitamin B12. J Biol Chem 278, 2077820784.
4Yamada, K, Gravel, RA, Toraya, T & Matthews, RG (2006) Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc Natl Acad Sci U S A 103, 94769481.
5Stabler, SP (1999) B12 and nutrition. In Chemistry and Biochemistry of B12, pp. 343365 [Banerjee, R, editor]. New York: John Wiley & Sons, Inc..
6Ebara, S, Adachi, S, Takenaka, S, Enomoto, T, Watanabe, F, Yamaji, R, Inui, H & Nakano, Y (2003) Hypoxia-induced megaloblastosis in vitamin B12-deficient rats. Br J Nutr 89, 441444.
7Nakao, M, Kono, N, Adachi, S, Ebara, S, Adachi, T, Miura, T, Yamaji, R, Inui, H & Nakano, Y (2006) Abnormal increase in the expression level of proliferating cell nuclear antigen (PCNA) in the liver and hepatic injury in rats with dietary cobalamin deficiency. J Nutr Sci Vitaminol 52, 168173.
8Scalabrino, G & Peracchi, M (2006) New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med 12, 247254.
9Ishikawa, E, Ninagawa, T & Suda, M (1965) Hormonal and dietary control of serine dehydratase in rat liver. J Biochem (Tokyo) 57, 506513.
10Snell, K (1984) Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul 22, 325400.
11Ogawa, H, Fujioka, M, Su, Y, Kanamoto, R & Pitot, HC (1991) Nutritional regulation and tissue-specific expression of the serine dehydratase gene in rat. J Biol Chem 266, 2041220417.
12Noda, C, Yakiyama, M, Nakamura, T & Ichihara, A (1988) Requirements of both glucocorticoids and glucagon as co-inducers for activation of transcription of the serine dehydratase gene in cultured rat hepatocytes. J Biol Chem 263, 1476414768.
13Kanamoto, R, Su, Y & Pitot, HC (1991) Effects of glucose, insulin, and cAMP on transcription of the serine dehydratase gene in rat liver. Arch Biochem Biophys 288, 562566.
14Granner, DK, Lee, A & Thompson, EB (1977) Interaction of glucocorticoid hormones and cyclic nucleotides in induction of tyrosine aminotransferase in cultured hepatoma cells. J Biol Chem 252, 38913897.
15Nitsch, D, Boshart, M & Schutz, G (1993) Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc Natl Acad Sci U S A 90, 54795483.
16Ebara, S, Toyoshima, S, Matsumura, T, Adachi, S, Takenaka, S, Yamaji, R, Watanabe, F, Miyatake, K, Inui, H & Nakano, Y (2001) Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats. Biochim Biophys Acta 1568, 111117.
17Stabler, SP, Sampson, DA, Wang, L-P & Allen, RH (1997) Elevations of serum cystathionine and total homocysteine in pyridoxine-, folate-, and cobalamin-deficient rats. J Nutr Biochem 8, 279289.
18van der Westhuyzen, J, van Tonder, SV, Gibson, JE, Kilroe-Smith, TA & Metz, J (1985) Plasma amino acids and tissue methionine levels in fruit bats (Rousettus aegyptiacus) with nitrous oxide-induced vitamin B12 deficiency. Br J Nutr 53, 657662.
19Peraino, C (1967) Interactions of diet and cortisone in the regulation of adaptive enzymes in rat liver. J Biol Chem 242, 38603867.
20Granner, DK, Hayashi, S, Thompson, EB & Tomkins, GM (1968) Stimulation of tyrosine aminotransferase synthesis by dexamethasone phosphate in cell culture. J Mol Biol 35, 291301.
21Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
22Su, Y, Kanamoto, R, Miller, DA, Ogawa, H & Pitot, HC (1990) Regulation of the expression of the serine dehydratase gene in the kidney and liver of the rat. Biochem Biophys Res Commun 170, 892899.
23Noda, C, Nakamura, T & Ichihara, A (1983) α-Adrenergic regulation of enzymes of amino acid metabolism in primary cultures of adult rat hepatocytes. J Biol Chem 258, 15201525.
24Emmelot, P & Bos, CJ (1969) Studies on plasma membranes. IX. A survey of enzyme activities displayed by plasma membranes isolated from normal and preneoplastic livers and primary and transplanted hepatomas of the rat. Int J Cancer 4, 705722.
25Salomon, Y, Londos, C & Rodbell, M (1974) A highly sensitive adenylate cyclase assay. Anal Biochem 58, 541548.
26Noda, C, Tomomura, M, Nakamura, T & Ichihara, A (1984) Hormonal control of serine dehydratase mRNA in primary cultures of adult rat hepatocytes. J Biochem (Tokyo) 95, 3745.
27Stabler, SP, Lindenbaum, J & Allen, RH (1996) The use of homocysteine and other metabolites in the specific diagnosis of vitamin B-12 deficiency. J Nutr 126, 1266S1272S.
28Toyoshima, S, Watanabe, F, Saido, H, Pezacka, EH, Jacobsen, DW, Miyatake, K & Nakano, Y (1996) Accumulation of methylmalonic acid caused by vitamin B12-deficiency disrupts normal cellular metabolism in rat liver. Br J Nutr 75, 929938.
29Pitot, HC & Peraino, C (1963) Carbohydrate repression of enzyme induction in rat liver. J Biol Chem 238, 19101912.
30Haas, MJ & Pitot, HC (1999) Glucocorticoids stimulate CREB binding to a cyclic-AMP response element in the rat serine dehydratase gene. Arch Biochem Biophys 362, 317324.
31Nichols, M, Weih, F, Schmid, W, DeVack, C, Kowenz-Leutz, E, Luckow, B, Boshart, M & Schutz, G (1992) Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J 11, 33373346.
32Neelands, PJ & Clandinin, MT (1983) Diet fat influences liver plasma-membrane lipid composition and glucagon-stimulated adenylate cyclase activity. Biochem J 212, 573583.
33Needham, L, Finnegan, I & Houslay, MD (1985) Adenylate cyclase and a fatty acid spin probe detect changes in plasma membrane lipid phase separations induced by dietary manipulation of the cholesterol:phospholipid ratio. FEBS Lett 183, 8186.
34Seamon, KB & Daly, JW (1986) Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res 20, 1150.
35Stubbs, CD & Smith, AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779, 89137.
36Calorini, L, Mugnai, G, Mannini, A & Ruggieri, S (1993) Effect of phosphatidylcholine structure on the adenylate cyclase activity of a murine fibroblast cell line. Lipids 28, 727730.
37Hebdon, GM, LeVine, HIII, Sahyoun, NE, Schmitges, CJ & Cuatrecasas, P (1981) Specific phospholipids are required to reconstitute adenylate cyclase solubilized from rat brain. Proc Natl Acad Sci U S A 78, 120123.
38Ross, EM (1982) Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J Biol Chem 257, 1075110758.
39Metz, J (1992) Cobalamin deficiency and the pathogenesis of nervous system disease. Annu Rev Nutr 12, 5979.
40Åkesson, B, Fehling, C & Jagerstad, M (1978) Effect of vitamin B12 deficiency on phosphatidylethanolamine methylation in rat liver. Br J Nutr 40, 521527.
41Hatta, S, Watanabe, M, Ikeda, H, Kamada, H, Saito, T & Ohshika, H (1995) Impairment of adenylyl cyclase signal transduction in mecobalamin-deficient rats. Eur J Pharmacol 291, 351358.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed