Skip to main content Accessibility help
×
Home

The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals

  • Jeroen C. J. Groot (a1), Barbara A. Williams (a2), Arno J. Oostdam (a2), Huug Boer (a2) and Seerp Tamminga (a2)...

Abstract

Differences between the fermentation characteristics of cell contents (CC) and protease-treated cell walls (CW) of young leaves of Italian ryegrass (Lolium multiflorum Lam.) cultivar Multimo (tetraploid), were studied in vitro. Gas and volatile fatty acid (VFA) production rates were measured at regular intervals, as was the degradability of organic matter (OM) of CW. The measured VFA were used to predict the gas production and fermentable OM using stoichiometric calculations. For CW the volume and kinetics of measured gas production were the same as those predicted from the VFA formed. In contrast, the measured gas production for CC was consistently less than predicted, indicating that the stoichiometric equations were not valid for rapidly fermenting substrates. For both CC and CW, the relative rate of acetic acid production levelled off more slowly than for other VFA, resulting in an increasing gas yield (in ml/g fermentable OM) after 12 (CW)-24 (CC)h incubation. Consequently, the fermentation of OM was not linearly related to gas production kinetics. For CW, the kinetics of decline of degradable OM and fermentable OM were the same, after correction for a constant ‘lost fraction’ of degradable OM of 205 g/kg OM. This work indicates the value of detailed studies of fermentation processes to evaluate herbage quality. In particular, the role of CC and the difference between degradation and fermentation require further attention.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author:Dr Barbara A. Williams, fax +31 317 484260, email Barbara.Williams@ALG.VV.WAU.NL
†Present address:Cehave n.v., PO Box 200, 5460 BC Veghel, The Netherlands.

References

Hide All
Beuvink, JMW & Spoelstra, SF (1992) Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen organisms in vitro. Applied Microbiology and Biotechnology 37, 505509.
Blümmel, M & Ørskov, ER (1993) Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology 40, 109119.
Chesson, A (1993) Mechanistic models of forage cell-wall degradation. In Forage Cell-wall Structure and Digestibility, pp. 347376 [Jung, HG, Buxton, DR, Hatfield, RD and Ralph, J, editors]. Madison, WI: American Society of Agronomy.
Erwin, ES & Elliston, NG (1959) Rapid method of determining digestibility of concentrates and roughages in cattle. Journal of Animal Science 18, 1518.
Genstat 5 Committee (1993) Genstat 5 Release 3 Reference Manual. Oxford: Clarendon Press.
Goering, HK & Van, Soest PJ (1970) Forage Fiber Analysis. Agricultural Handbook 279. Washington, DC: United States Department of Agriculture.
Groot, JCJ, Cone, J, Williams, BA, Debersaques, FD & Lantinga, EA (1996) Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology 64, 7789.
Hespel, RB (1979) Efficiency of growth by ruminal bacteria. Federation Proceedings 38, 27072712.
Hungate, RE (1966) The Rumen and Its Microbes. New York, NY: Academic Press.
Leedle, JAZ & Greening, RC (1988) Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high- or low-forage diets once daily. Applied and Environmental Microbiology 54, 502506.
Lin, KW, Patterson, JA & Ladish, MR (1985) Anaerobic fermentation: microbes from ruminants. Enzyme Microbiology and Technology 7, 98107.
McAllister, TA, Bae, HD, Jones, GA & Cheng, K-J (1994) Microbial attachment and feed digestion in the rumen. Journal of Animal Science 72, 30043018.
Merchen, NR & Bourquin, LD (1994) Processes of digestion and factors influencing digestion of forage-based diets by ruminants. In Forage Quality, Evaluation, and Utilization, pp. 564612 [Fahey, GC Jr, editor]. Madison, WI: American Society of Agronomy.
Miller, TL (1995) Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp. 317331 [Engelhardt Von, E, Leonhard-Marek, S, Breves, G and Giesecke, D, editors]. Stuttgart: Ferdinand Enke Verlag.
Ørskov, ER, Hovell, FDDeB & Mould, F (1980) The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production 5, 195213.
Pell, AN & Schofield, P (1993) Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science 76, 10631073.
Russell, JB & Wallace, RJ (1988) Energy yielding and consuming reactions. In The Rumen Microbial Ecosystem, pp. 185215 [Hobson, PN, editor]. Essex: Elsevier.
Salvador, V, Cherbut, C, Barry, J-L, Bertrand, D, Bonnet, C & Delort-Laval, J (1993) Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. British Journal of Nutrition 70, 189197.
Steiner, AA (1984) The universal nutrient solution. In Proceedings of the VIth International Congress on Soilless Culture, pp. 633650. Wageningen, The Netherlands: Secretariat of the International Society for Soilless Culture, ISOSC.
Theodorou, MK, Williams, BA, Dhanoa, MS, McAllan, AB & France, J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.
Tilley, JMA & Terry, RA (1963) A two-stage technique for the in-vitro digestion of forage crops. Journal of the British Grassland Society 18, 104111.
Van Houtert, MFJ (1993) The production and metabolism of volatile fatty acids by ruminants fed roughages: a review. Animal Feed Science and Technology 43, 189225.
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant: Ruminant Metabolism, Nutritional Strategies, the Cellulolytic Fermentation and the Chemistry of Forages and Plant Fibers. Oregon: O&B Books Inc.
Wolin, MJ (1975) Interactions between bacterial species in the rumen. In Digestion and Metabolism in the Ruminant, pp. 14521459 [McDonald, IW and Warner, AC, editors]. Armidale: The University of New England Publishing Unit.
Wolin, MJ (1979) The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Advances in Microbial Ecology 3, 4977.

Keywords

The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals

  • Jeroen C. J. Groot (a1), Barbara A. Williams (a2), Arno J. Oostdam (a2), Huug Boer (a2) and Seerp Tamminga (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed