Skip to main content Accessibility help
×
Home

Transcriptomics and micronutrient research

  • Ruan M. Elliott (a1)

Abstract

This review examines the extent to which transcriptomic methods have lived up to their promise in the context of nutrition research, placing particular emphasis on examples from micronutrient research. A case is made that the high quality platform technologies now available, together with established standards and systems for data storage and exchange and powerful new methods of data analysis, mean that microarrays have reached a level of technical maturity at which they can be exploited to their full potential. In the context of nutrition and micronutrient research, transcriptomic methods have already been widely applied, albeit primarily in studies using cell lines and animal models. Using this type of approach, a multitude of genes regulated at the mRNA level by dietary components has been identified and this, in turn, has provided new insights into the biological processes affected by nutritional parameters. Evidence from the very limited number of published transcriptomics-based nutritional studies performed in human volunteers suggests that, with appropriate study design, it is feasible to apply transcriptomic methods successfully in dietary intervention trials. On the other hand, gene expression-based biomarker development still poses a major challenge. Here the use of expression profile ‘signatures’, rather than single genes, may provide a solution. Approaches designed to identify such ‘signatures’ are being developed and tested widely, primarily in the context of medical research. The applicability and power of such approaches should also be evaluated in the context of nutrition.

Copyright

Corresponding author

*Corresponding author: Dr Ruan Elliott, fax 01603 507723, email ruan.elliott@bbsrc.ac.uk

References

Hide All
1Elliott, R & Ong, TJ (2002) Nutritional genomics. BMJ 324, 14381442.
2Corthesy-Theulaz, I, den Dunnen, JT, Ferre, P, Geurts, JM, Muller, M, van Belzen, N & van Ommen, B (2005) Nutrigenomics: the impact of biomics technology on nutrition research. Ann Nutr Metab 49, 355365.
3Kaput, J (2007) Developing the promise of nutrigenomics through complete science and international collaborations. Forum Nutr 60, 209223.
4van Ommen, B & Stierum, R (2002) Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol 13, 517521.
5Kussmann, M, Raymond, F & Affolter, M (2006) Omics-driven biomarker discovery in nutrition and health. J Biotechnol 124, 758787.
6Schena, M, Shalon, D, Davis, RW & Brown, PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467470.
7Guo, L, Lobenhofer, EK, Wang, C, et al. (2006) Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol 24, 11621169.
8Xing, Y, Kapur, K & Wong, WH (2006) Probe selection and expression index computation of affymetrix exon arrays. PLoS ONE 1, e88.
9Gardina, PJ, Clark, TA, Shimada, B, et al. (2006) Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7, 325.
10Brazma, A, Hingamp, P, Quackenbush, J, et al. (2001) Minimum information about a microarray experiment (miame)-toward standards for microarray data. Nat Genet 29, 365371.
11Spellman, PT, Miller, M, Stewart, J, et al. (2002) Design and implementation of microarray gene expression markup language (mage-ml). Genome Biol 3, RESEARCH0046.
12Parkinson, H, Sarkans, U, Shojatalab, M, et al. (2005) Arrayexpress–a public repository for microarray gene expression data at the ebi. Nucleic Acids Res 33, D553D555.
13Barrett, T, Suzek, TO, Troup, DB, et al. (2005) Ncbi geo: mining millions of expression profiles–database and tools. Nucleic Acids Res 33, D562D566.
14Rocca-Serra, P & Elliott, RM (2006) Data storage: bringing us a step closer to data sharing? Br J Nutr 95, 12371239.
15Whitney, AR, Diehn, M, Popper, SJ, Alizadeh, AA, Boldrick, JC, Relman, DA & Brown, PO (2003) Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A 100, 18961901.
16Radich, JP, Mao, M, Stepaniants, S, et al. (2004) Individual-specific variation of gene expression in peripheral blood leukocytes. Genomics 83, 980988.
17Eady, JJ, Wortley, GM, Wormstone, YM, Hughes, JC, Astley, SB, Foxall, RJ, Doleman, JF & Elliott, RM (2005) Variation in gene expression profiles of peripheral blood mononuclear cells from healthy volunteers. Physiol Genomics 22, 402411.
18van Erk, MJ, Blom, WA, van Ommen, B & Hendriks, HF (2006) High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells. Am J Clin Nutr 84, 12331241.
19Niculescu, MD, Pop, EA, Fischer, LM & Zeisel, SH (2007) Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not. J Nutr Biochem 18, 380390.
20Pagmantidis, V, Meplan, C, van Schothorst, EM, Keijer, J & Hesketh, JE (2008) Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am J Clin Nutr 87, 181189.
21Coppin, H, Darnaud, V, Kautz, L, Meynard, D, Aubry, M, Mosser, J, Martinez, M & Roth, MP (2007) Gene expression profiling of hfe − / − liver and duodenum in mouse strains with differing susceptibilities to iron loading: identification of transcriptional regulatory targets of hfe and potential hemochromatosis modifiers. Genome Biol 8, R221.
22Abgueguen, E, Toutain, B, Bedrine, H, et al. (2006) Differential expression of genes related to hfe and iron status in mouse duodenal epithelium. Mamm Genome 17, 430450.
23Mazzatti, DJ, Malavolta, M, White, AJ, Costarelli, L, Giacconi, R, Muti, E, Cipriano, C, Powell, JR & Mocchegiani, E (2007) Differential effects of in vitro zinc treatment on gene expression in peripheral blood mononuclear cells derived from young and elderly individuals. Rejuvenation Res 10, 603620.
24Scherf, M, Epple, A & Werner, T (2005) The next generation of literature analysis: integration of genomic analysis into text mining. Brief Bioinform 6, 287297.
25Gentleman, RC, Carey, VJ, Bates, DM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80.
26Mootha, VK, Lindgren, CM, Eriksson, KF, et al. (2003) Pgc-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267273.
27Subramanian, A, Tamayo, P, Mootha, VK, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 1554515550.
28Aydemir, TB, Blanchard, RK & Cousins, RJ (2006) Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci U S A 103, 16991704.
29Naderi, A, Teschendorff, AE, Barbosa-Morais, NL, et al. (2007) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26, 15071516.
30Lyman, GH & Kuderer, NM (2006) Gene expression profile assays as predictors of recurrence-free survival in early-stage breast cancer: a metaanalysis. Clin Breast Cancer 7, 372379.
31Marchionni, L, Wilson, RF, Wolff, AC, Marinopoulos, S, Parmigiani, G, Bass, EB & Goodman, SN (2008) Systematic review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med 148, 358369.
32Xu, L, Tan, AC, Winslow, RL & Geman, D (2008) Merging microarray data from separate breast cancer studies provides a robust prognostic test. BMC Bioinformatics 9, 125.
33Jones, LC, Beard, JL & Jones, BC (2008) Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications. Hippocampus 18, 398410.
34Rodriguez, A, Hilvo, M, Kytomaki, L, Fleming, RE, Britton, RS, Bacon, BR & Parkkila, S (2007) Effects of iron loading on muscle: genome-wide mrna expression profiling in the mouse. BMC Genomics 8, 379.
35Collins, JF, Franck, CA, Kowdley, KV & Ghishan, FK (2005) Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Am J Physiol Gastrointest Liver Physiol 288, G964G971.
36Tamura, T, Nozaki, A, Abe, K, Dansako, H, Naka, K, Ikeda, M, Tanaka, K & Kato, N (2005) Cdna microarray analysis of lactoferrin expression in non-neoplastic human hepatocyte ph5ch8 cells. Biochim Biophys Acta 1721, 7380.
37Bedrine-Ferran, H, Le Meur, N, Gicquel, I, et al. (2004) Transcriptome variations in human caco-2 cells: a model for enterocyte differentiation and its link to iron absorption. Genomics 83, 772789.
38Martin, ME, Nicolas, G, Hetet, G, Vaulont, S, Grandchamp, B & Beaumont, C (2004) Transferrin receptor 1 mRNA is downregulated in placenta of hepcidin transgenic embryos. FEBS Lett 574, 187191.
39Muckenthaler, M, Roy, CN, Custodio, AO, Minana, B, deGraaf, J, Montross, LK, Andrews, NC & Hentze, MW (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and cybrd1 expression in mouse hemochromatosis. Nat Genet 34, 102107.
40Muckenthaler, M, Richter, A, Gunkel, N, et al. (2003) Relationships and distinctions in iron-regulatory networks responding to interrelated signals. Blood 101, 36903698.
41Bilello, JP, Cable, EE & Isom, HC (2003) Expression of e-cadherin and other paracellular junction genes is decreased in iron-loaded hepatocytes. Am J Pathol 162, 13231338.
42Alcantara, O, Kalidas, M, Baltathakis, I & Boldt, DH (2001) Expression of multiple genes regulating cell cycle and apoptosis in differentiating hematopoietic cells is dependent on iron. Exp Hematol 29, 10601069.
43Sun, JY, Wang, JF, Zi, NT, Jing, MY & Weng, XY (2007) Gene expression profiles analysis of the growing rat liver in response to different zinc status by cdna microarray analysis. Biol Trace Elem Res 115, 169185.
44Yamada, H, Suzuki, K & Koizumi, S (2007) Gene expression profile in human cells exposed to zinc. J Toxicol Sci 32, 193196.
45Haase, H, Mazzatti, DJ, White, A, Ibs, KH, Engelhardt, G, Hebel, S, Powell, JR & Rink, L (2007) Differential gene expression after zinc supplementation and deprivation in human leukocyte subsets. Mol Med 13, 362370.
46Tang, Z, Sahu, SN, Khadeer, MA, Bai, G, Franklin, RB & Gupta, A (2006) Overexpression of the zip1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 38, 181198.
47Tom Dieck, H, Doring, F, Fuchs, D, Roth, HP & Daniel, H (2005) Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J Nutr 135, 199205.
48Andree, KB, Kim, J, Kirschke, CP, Gregg, JP, Paik, H, Joung, H, Woodhouse, L, King, JC & Huang, L (2004) Investigation of lymphocyte gene expression for use as biomarkers for zinc status in humans. J Nutr 134, 17161723.
49Kindermann, B, Doring, F, Pfaffl, M & Daniel, H (2004) Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line ht-29. J Nutr 134, 5762.
50Cousins, RJ, Blanchard, RK, Popp, MP, Liu, L, Cao, J, Moore, JB & Green, CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human thp-1 mononuclear cells. Proc Natl Acad Sci U S A 100, 69526957.
51Inoue, K, Matsuda, K, Itoh, M, et al. (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, znt5. Hum Mol Genet 11, 17751784.
52Blanchard, RK, Moore, JB, Green, CL & Cousins, RJ (2001) Modulation of intestinal gene expression by dietary zinc status: effectiveness of cdna arrays for expression profiling of a single nutrient deficiency. Proc Natl Acad Sci U S A 98, 1350713513.
53Moore, JB, Blanchard, RK, McCormack, WT & Cousins, RJ (2001) Cdna array analysis identifies thymic lck as upregulated in moderate murine zinc deficiency before t-lymphocyte population changes. J Nutr 131, 31893196.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed