Skip to main content Accessibility help
×
Home

Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice

  • Gyeong-Min Do (a1), Eun-Young Kwon (a1) (a2), Tae-Youl Ha (a3), Yong Bok Park (a4), Hye-Jin Kim (a5), Seon-Min Jeon (a1), Mi-Kyung Lee (a6) and Myung-Sook Choi (a1) (a2)...

Abstract

The effects of tannic acid (TA) supplementation (0·02 %, wt/wt) were compared with the effects of clofibrate (CF) supplementation (0·02 %, wt/wt) in apo E-deficient (apo E− / −) mice fed a AIN-76 semi-synthetic diet (normal diet) over 20 weeks. The mice were monitored for the modulation of hepatic mRNA expression and the activities of lipid-regulating enzymes. Both TA and CF supplementation lowered hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) activity and prevented atherosclerotic lesion formation in comparison with the control group. Hepatic carnitine palmitoyl transferase and β-oxidation activities were significantly higher in the TA and CF groups than in the control group. Both CF and TA supplementation resulted in significant decreases in hepatic HMGR mRNA levels in association with its enzyme activity. However, in contrast to CF supplementation, TA supplementation seemed to decrease the accumulation of hepatic lipids in the apo E− / − mice without increasing liver weight. These results suggest that the overall effect of TA is more desirable than CF for the alleviation of hepatic lipogenesis and atherogenesis in apo E− / − mice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: M.-S. Choi, fax +82 053 958 1230, email mschoi@knu.ac.kr

References

Hide All
1 Block, G, Patterson, B & Subar, A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18, 129.
2 Willett, WC (1994) Diet and health: what should we eat? Science 264, 532537.
3 Han, X, Shen, T & Lou, H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8, 950988.
4 Shahidi, F & Naczk, M (1995) Food Phenolics: Sources; Chemistry; Effects; Applications. Lancaster, Pennsylvania: Technomic Publishing, Inc.
5 Higdon, JA & Frei, B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. CRC Crit Rev Food Sci Nutr 43, 89143.
6 Santos-Buelga, C & Scalbert, A (2000) Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80, 10941117.
7 Ragan, MA & Glombitza, K (1986) Phlorotannins: brown algal polyphenols. Prog Phycol Res 4, 177241.
8 Clifford, MN & Scalbert, A (2000) Ellagitannins – nature, occurrence and dietary burden. J Sci Food Agric 80, 11181125.
9 Haslam, E (1989) Plant Polyphenols-Vegetable Tannins Revisited. Cambridge: Cambridge University Press.
10 Okuda, T, Yoshida, T & Hatano, T (1995) Hydrolyzable tannins and related polyphenols. Fortschr Chem Org Naturst 66, 1117.
11 Hagerman, AE, Riedl, KM, Jones, JA, et al. (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46, 18871892.
12 Gyamifi, MA & Aniya, Y (2002) Antioxidant properties of Thonningianin A, isolated from the African meficifnal herb, Thonningia sanguinia. Biochem Pharmacol 63, 17251737.
13 Cowan, MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12, 564582.
14 Yugarani, T, Tan, BKH & Das, NP (1993) The effects of tannic acid on serum and liver lipids of RAIF and RICO rats fed on high fat diet. Comp Biochemi Physiol 104, 339343.
15 Lardenoye, JH, Delsing, DJ, de Vries, MR, et al. (2000) Accelerated atherosclerosis by placement of a perivascular cuff and a cholesterol-rich diet in ApoE3Leiden transgenic mice. Circ Res 87, 248253.
16 Nagasawa, T, Inada, Y, Nakano, S, et al. (2006) Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur J Pharmacol 24, 182191.
17 Tosh, D, Alberti, KG & Agius, L (1989) Clofibrate induces carnitine acyltransferases in periportal and perivenous zones of rat liver and does not disturb the acinar zonation of gluconeogenesis. Biochim Biophys Acta 992, 245250.
18 Bligh, EG & Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911917.
19 Moghadasian, MH, Mcmanus, BM, Pritchard, PH, et al. (1997) Tall oil-derived phytosterols reduce atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 17, 119126.
20 Hulcher, FH & Oleson, WH (1973) Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 14, 625631.
21 Shapiro, DJ, Nordstrom, JL, Mitschelen, JJ, et al. (1974) Micro assay for 3-hydroxy-3-methylglutaryl CoA reductase in rat liver and in L-cell fibroblasts. Biochim Biophys Acta 370, 369377.
22 Gillies, PJ, Rathgeb, KA, Perri, MA, et al. (1986) Regulation of acyl-CoA:cholesterol acyltransferase activity in normal and atherosclerotic rabbit aortas: role of a cholesterol substrate pool. Exp Mol Pathol 44, 320339.
23 Carl, MN, Lakshmanan, MR & Porter, JW (4000) Fatty acid synthase from rat liver. Methods Enzymol 35, 3744.
24 Markwell, MAK, McGroarty, EJ, Bieber, LL, et al. (1973) The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. J Biol Chem 248, 34263432.
25 Lazarow, PB (1981) Assay of peroxisomal β-oxidation of fatty acids. Methods Enzymol 72, 315319.
26 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2_DDCt method. Methods 25, 402408.
27 Nathan, JD, Zdankiewicz, PD, Wang, J, et al. (2001) Impaired hepatocyte glucose transport protein (GLUT2) internalization in chronic pancreatitis. Pancreas 22, 172178.
28 Okuda, T & Yoshida, T (1992) Polyphenols from Asian plants – structural diversity, and antitumor and antiviral activities. Phenolic compounds in food and their effects on health II. ACS Symposium Series 507, 160183.
29 Bravo, L, Abia, R, Eastwood, MA, Saura-Calixto, F, et al. (1994) Degradation of polyphenols in the rat intestinal tract. Effect on colonic fermentation and fecal output. Br J Nutr 71, 933946.
30 Lapinskas, P, Corton, C, Puga, A, et al. (1999) Molecular mechanisms of hepatocarcinogenic peroxisome proliferators. In Molecular Biology of the Toxic Response. Philadelphia: Taylor and Francis.
31 Lindquist, PJ, Svensson, LT & Alexson, SE (1998) Molecular cloning of the peroxisome proliferators-induced 46 kDa cytosolic acyl CoA thioesterase from mouse and rat liver – recombinant expression in Escherichia coli, tissue expression and nutritional regulation. Eur J Biochem 251, 631640.
32 Tebib, K, Besancon, P & Rouanet, J-M (1994) Polymeric grape seed tannins prevent plasma cholesterol changes in high-cholesterol-fed rats. Food Chem 49, 44034406.
33 Linton, MF & Fazio, S (2000) Re-emerence of fibrates in the management of dyslipidemia and cardiovascular risk. Curr Atheroscler Rep 2, 2935.
34 Pászty, C, Maeda, N, Verstuyft, J, et al. (1994) Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94, 899903.
35 Tkác, I, Kimball, BP, Lewis, G, et al. (1997) The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler Thromb Vasc Biol 17, 36333638.
36 Tardif, JC, Heinonen, T & Noble, S (2009) High-density lipoprotein/apolipoprotein A-I infusion therapy. Curr Atheroscler Rep 11, 5863.
37 Dansky, HM, Charlton, SA, Barlow, CB, et al. (1999) The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Clin Invest 104, 3139.
38 Bocan, TM, Mueller, SB & Brown, EQ (1998) HMG-CoA reductase and ACAT inhibitors act synergistically to lower plasma cholesterol and limit atherosclerotic lesion in the cholesterol-fed rabbit. Atherosclerosis 139, 2130.
39 Suckling, KE & Stange, EF (1985) Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res 26, 647671.
40 Do, GM, Kwon, EY, Kim, HJ, et al. (2008) Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun 374, 5559.
41 Oguchi, S, Dimayuga, P, Zhu, J, et al. (2000) Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 20, 17291736.
42 Imai, K & Nakachi, K (1995) Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 310, 693696.
43 Gobin, S, Bonnefont, JP, Prip-Buus, C, et al. (2002) Organization of the human liver carnitine palmitoyltransferase 1 gene (CPT1A) and identification of novel mutations in hypoketotic hypoglycaemia. Hum Genet 111, 179189.
44 Ohhira, M, Motomura, W, Fukuda, M, et al. (2007) Lipopolysaccharide induces adipose differentiation-related protein expression and lipid accumulation in the liver through inhibition of fatty acid oxidation in mice. J Gastroenterol 42, 969978.
45 Lock, EA, Mitchell, AM & Elcombe, CR (1989) Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 29, 145163.
46 Gloerich, J, van Vlies, N, Jansen, GA, et al. (2005) A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways. J Lipid Res 46, 716726.
47 Ringseis, R & Eder, K (2009) Influence of pharmacological PPARalpha activators on carnitine homeostasis in proliferating and non-proliferating species. Pharmacol Res 60, 179184.
48 Dulloo, AG, Duret, C, Rohrer, D, et al. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70, 10401045.
49 Stefanovic-Racic, M, Perdomo, G, Mantell, BS, et al. (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab 294, E969E977.
50 Akkaoui, M, Cohen, I, Esnous, C, et al. (2009) Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Biochem J 27 420, 429438.
51 Glick, Z & Joslyn, MA (1970) Food intake depression and other metabolic effects of tannic acid in the rat. J Nutr 100, 509515.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed