Skip to main content Accessibility help
×
Home

A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses

  • Hanny M. Boers (a1), Jack Seijen ten Hoorn (a1) and David J. Mela (a1)

Abstract

Rice is an important staple food for more than half of the world's population. Especially in Asian countries, rice is a major contributor to dietary glycaemic load (GL). Sustained consumption of higher-GL diets has been implicated in the development of chronic diseases such as type 2 diabetes mellitus. Given that a reduction in postprandial glycaemic and insulinaemic responses is generally seen as a beneficial dietary change, it is useful to determine the variation in the range of postprandial glucose (PPG) and insulin (PPI) responses to rice and the primary intrinsic and processing factors known to affect such responses. Therefore, we identified relevant original research articles on glycaemic response to rice through a systematic search of the literature in Scopus, Medline and SciFinder databases up to July 2014. Based on a glucose reference value of 100, the observed glycaemic index values for rice varieties ranged from 48 to 93, while the insulinaemic index ranged from 39 to 95. There are three main factors that appear to explain most of the variation in glycaemic and insulinaemic responses to rice: (1) inherent starch characteristics (amylose:amylopectin ratio and rice cultivar); (2) post-harvest processing (particularly parboiling); (3) consumer processing (cooking, storage and reheating). The milling process shows a clear effect when compared at identical cooking times, with brown rice always producing a lower PPG and PPI response than white rice. However, at longer cooking times normally used for the preparation of brown rice, smaller and inconsistent differences are observed between brown and white rice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: H. M. Boers, email hanny.boers@unilever.com

References

Hide All
1 Kennedy, G, Burlingame, B & Nguyen, VN (2003) Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. In Proceedings of the 20th Session of the International Rice Commission, Bangkok, Thailand. Rome: FAO.
2 Kumar, S, Mohanraj, E, Sudha, V, et al. (2011) Perceptions about varieties of brown rice: a qualitative study from Southern India. J Am Diet Assoc 111, 15171522.
3 Zhang, G, Malik, VS, Pan, A, et al. (2010) Substituting brown rice for white rice to lower diabetes risk: a focus-group study in Chinese adults. J Am Diet Assoc 110, 12161221.
4 Mohan, V, Radhika, G, Vijayalakshmi, P, et al. (2010) Editorial: can the diabetes/cardiovascular disease epidemic in India be explained, at least in part, by excess grain (rice) intake? Ind J Med Res 131, 369372.
5 Blaak, EE, Antoine, JM, Benton, D, et al. (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13, 923984.
6 Hu, EA, Pan, A, Malik, V, et al. (2012) White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. Br Med J 344, e1454.
7 Neal, B (2012) White rice and risk of type 2 diabetes. Br Med J 344, e2021.
8 Foster-Powell, K, Holt, SHA & Brand-Miller, JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76, 556.
9 Brand Miller, J, Pang, E & Bramall, L (1992) Rice: a high or low glycemic index food? Am J Clin Nutr 56, 10341036.
10 Sajilata, MG, Singhal, RS & Kulkarni, PR (2006) Resistant starch – a review. Compr Rev Food Sci Food Safety 5, 117.
11 Hu, P, Zhao, H, Duan, Z, et al. (2004) Starch digestibility and the estimated glycemic score of different types of rice differing in amylose content. J Cereal Sci 40, 231237.
12 Atwell, WA, Hood, LF, Lineback, DR, et al. (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33, 306311.
13 Tester, RF & Sommerville, MD (2003) The effects of non-starch polysaccharides on the extent of gelatinization, swelling and alpha-amylase hydrolysis of maize and wheat starches. Food Hydrocolloids 17, 4154.
14 Faraj, A, Vasanthan, T & Hoover, R (2004) The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Res Int 37, 517525.
15 Mitra, A, Bhattacharya, D & Roy, S (2007) Role of resistant starches particularly rice containing resistant starches in type 2 diabetes. J Hum Ecol 21, 4751.
16 Sievert, D & Pomeranz, Y (1989) Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical and microscopic methods. Cereal Chem 66, 342347.
17 Dipti, SS, Bergman, C, Indrasari, SD, et al. (2012) The potential of rice to offer solutions for malnutrition and chronic diseases. Rice 5, 118.
18 Ranawana, DV, Henry, CJK, Lightowler, HJ, et al. (2009) Glycaemic index of some commercially available rice and rice products in Great Britain. Int J Food Sci Nutr 60, 99110.
19 Owens, G (editor) (2001) Cereals Processing Technology. Cambridge: Woodhead Publishing Limited.
20 Li, M, Piao, J-H, Tian, Y, et al. (2010) Postprandial glycaemic and insulinaemic responses to GM-resistant starch-enriched rice and the production of fermentation-related H2 in healthy Chinese adults. Br J Nutr 103, 10291034.
21 Casiraghi, MC, Brighenti, F, Pellegrini, N, et al. (1993) Effect of processing on rice starch digestibility evaluated by in vivo and in vitro methods. J Cereal Sci 17, 147156.
22 Al-Mssallem, MQ, Hampton, SM, Frost, GS, et al. (2011) A study of Hassawi rice (Oryza sativa L.) in terms of its carbohydrate hydrolysis (in vitro) and glycaemic and insulinaemic indices (in vivo). Eur J Clin Nutr 65, 627634.
23 Juliano, BO & Goddard, MS (1986) Cause of varietal difference in insulin and glucose responses to ingested rice. Qual Plant Plant Foods Hum Nutr 36, 3541.
24 Juliano, BO, Perez, CM, Komindr, S, et al. (1989) Properties of Thai cooked rice and noodles differing in glycemic index in non-insulin-dependent diabetics. Plant Foods Hum Nutr 39, 369374.
25 Panlasigui, L, Thompson, LU, Juliano, BO, et al. (1991) Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am J Clin Nutr 54, 871877.
26 Panlasigui, LN & Thompson, LU (2006) Blood glucose lowering effects of brown rice in normal and diabetic subjects. Int J Food Sci Nutr 57, 151158.
27 Kim, JC, Kim, J-I, Kong, B-W, et al. (2004) Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch in vitro and on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus. Biosci Biotechnol Biochem 68, 18311836.
28 Larsen, HN, Rasmussen, OW, Rasmussen, PH, et al. (2000) Glycaemic index of parboiled rice depends on the severity of processing: study in type 2 diabetic subjects. Eur J Clin Nutr 54, 380385.
29 Kataoka, M, Venn, BJ, Williams, SM, et al. (2013) Glycaemic responses to glucose and rice in people of Chinese and European ethnicity. Diabet Med 30, 101107.
30 Trinidad, TP, Mallillin, AC, Encabo, RR, et al. (2013) The effect of apparent amylose content and dietary fibre on the glycemic response of different varieties of cooked milled and brown rice. Int J Food Sci Nutr 64, 8993.
31 Zarrati, M, Pirali, M, Mirmiran, P, et al. (2008) Glycemic index of various brands of rice in healthy individuals. Int J Endocrinol Metab 4, 200204.
32 Larsen, HN, Christensen, C, Rasmussen, OW, et al. (1996) Influence of parboiling and physico-chemical characteristics of rice on the glycaemic index in non-insulin-dependent diabetic subjects. Eur J Clin Nutr 50, 2227.
33 Goddard, MS, Young, G & Marcus, R (1984) The effect of amylose content on insulin and glucose responses to ingested rice. Am J Clin Nutr 39, 388392.
34 Hettiarachchi, P, Jiffry, MTM, Jansz, ER, et al. (2001) Glycaemic indices of different varieties of rice grown in Sri Lanka. Ceylon Med J 46, 1114.
35 Srinivasa, D, Raman, A, Meena, P, et al. (2013) Glycaemic index (GI) of an Indian branded thermally treated Basmati rice variety: a multi centric study. J Assoc Phys India 61, 716720.
36 Henry, CJK, Lightowler, HJ, Strik, CM, et al. (2005) Glycaemic index and glycaemic load values of commercially available products in the UK. Br J Nutr 94, 922930.
37 Karupaiah, T, Aik, CK, Heen, TC, et al. (2011) A transgressive brown rice mediates favourable glycaemic and insulin responses. J Sci Food Agric 91, 19511956.
38 Chiu, Y-T & Stewart, ML (2013) Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans. Asia Pac J Nutr 22, 372379.
39 Wolever, TMS, Jenkins, DJA, Kalmusky, J, et al. (1986) Comparison of regular and parboiled rices: explanation of discrepancies between reported glycemic responses to rice. Nutr Res 6, 349357.
40 Jung, EY, Suh, HJ, Hong, WS, et al. (2009) Uncooked rice of relatively low gelatinization degree resulted in lower metabolic glucose and insulin responses compared with cooked rice in female college students. Nutr Res 29, 457461.
41 Bhattacharjee, P, Singhal, RS & Kulkarni, PR (2002) Basmati rice: a review. Int J Food Sci Techn 37, 12.
42 Björck, I, Granfeldt, Y, Liljeberg, H, et al. (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59, Suppl. 3, 699S705S.
43 Fredriksson, H, Silverio, J, Andersson, R, et al. (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35, 119134.
44 Fitzgerald, MA, Rahman, S, Resurreccion, AP, et al. (2011) Identification of a major genetic determinant of glycaemic index in rice. Rice 4, 6674.
45 Tran, NAV, Daygon, DA, Resurreccion, R, et al. (2011) A single nucleotide polymorphism on the Waxy gene explains gel consistency. Theor Appl Genet 123, 519525.
46 Benmoussa, M, Moldenhauer, KAK & Hamaker, BR (2007) Rice amylopectin fine structure variability affects starch digestion properties. J Agric Food Chem 55, 14751479.
47 Oli, P, Ward, R, Adhikari, B, et al. (2014) Parboiled rice: understanding from a materials science approach. J Food Eng 124, 173183.
48 Islam, MR, Shimizu, N & Kimura, T (2002) Effect of processing conditions on thermal properties of parboiled rice. Food Sci Technol Res 8, 131136.
49 Zavareze, EdR, Storck, CR, de Castro, LAS, et al. (2010) Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem 121, 358365.
50 Yadav, BS, Sharma, A & Yadav, RB (2009) Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr 60, 258272.
51 Parastouei, K, Shahaboddin, ME, Motalebi, M, et al. (2011) Glycemic index of Iranian rice. Sci Res Essays 6, 53025307.
52 Ranawana, V, Henry, JK & Pratt, M (2010) Degree of habitual mastication seems to contribute to interindividual variations in the glycemic response to rice but not to spaghetti. Nutr Res 30, 382391.
53 Chang, UJ, Hong, YH, Jung, EY, et al. (2014) Rice and the glycemic index: benefits, risks and mechanisms of whole grains in health promotion. In Wheat and Rice in Disease Prevention and Health, pp. 357363 [Watson, RR, Preedy, V and Zibadi, S, editors]. London: Elsevier, Inc.
54 Mohan, V, Spiegelman, D, Sudha, V, et al. (2014) Effect of brown rice, white rice, and brown rice with legumes on blood glucose and insulin responses in overweight Asian Indians: randomized trial. Diabetes Technol Ther 16, 317325.
55 Vega-Lopez, S, Ausman, LM, Griffith, JL, et al. (2007) Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 30, 14121417.
56 Dickinson, S, Colagiuri, S, Faramus, E, et al. (2002) Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. J Nutr 132, 25742579.
57 Truong, TH, Yuet, WC & Hall, MD (2014) Glycemic index of American-grown jasmine rice classified as high. Int J Food Sci Nutr 65, 436439.
58 Ranawana, V, Leow, MK-S & Henry, CJK (2014) Mastication effects of the glycaemic index: impact on variability and practical implications. Eur J Clin Nutr 68, 137139.
59 Gatti, E, Testolin, G, Noè, D, et al. (1987) Plasma glucose and insulin responses to carbohydrate food (rice) with different thermal processing. Ann Nutr Metab 31, 296303.
60 Matsuo, T, Mizushima, Y, Komuro, M, et al. (1999) Estimation of glycemic and insulinemic responses to short-grain rice (Japonica) and a short-grain rice-mixed meal in healthy young subjects. Asia Pac J Clin Nutr 8, 190194.
61 Shobana, S, Kokila, A, Lakshmipriya, N, et al. (2012) Glycaemic index of three Indian rice varieties. Int J Food Sci Nutr 63, 178183.

Keywords

Type Description Title
WORD
Supplementary materials

Boers supplementary material
Table S2

 Word (25 KB)
25 KB
WORD
Supplementary materials

Boers supplementary material
Table S3

 Word (16 KB)
16 KB
WORD
Supplementary materials

Boers supplementary material
Table S4

 Word (15 KB)
15 KB

A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses

  • Hanny M. Boers (a1), Jack Seijen ten Hoorn (a1) and David J. Mela (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed