Skip to main content Accessibility help
×
Home

Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: the Maine–Syracuse Longitudinal Study

  • Georgina E. Crichton (a1), Merrill F. Elias (a2) (a3) and Rachael V. Torres (a2)

Abstract

The importance of adequate nutrition on cognitive performance is well recognised. Greater intakes of soft drinks are associated with a higher risk for type 2 diabetes, as well as other cardiometabolic diseases. A few studies have specifically examined whether the intake of soft drinks may be related to cognitive function. The aim of this study was to investigate whether soft drink intakes, including both sugar-sweetened and diet beverages, are associated with cognitive function, with adjustment for cardiovascular, lifestyle and dietary factors, and stratified according to type 2 diabetes status. Cross-sectional analyses were undertaken using 803 community-dwelling participants, aged 23–98 years, from the Maine–Syracuse Longitudinal Study. Cognitive function was measured using an extensive battery of neuropsychological tests. Usual dietary intake of soft drinks was assessed using a FFQ. Stratification by type 2 diabetes indicated that a greater intake of sugar-sweetened soft drinks was significantly associated with poorer performance in visual spatial memory, working memory, scanning and tracking, executive function, the global composite and the Mini-Mental State Examination in diabetic individuals. These relations were not attenuated with statistical control for BMI and other cardiovascular, lifestyle and dietary factors. Diet soft drink intake was unrelated to cognitive performance. Frequent sugar-sweetened soft drink intake was associated with poorer cognitive performance, particularly in individuals with type 2 diabetes, but the underlying causal mechanisms are yet to be determined. Longitudinal studies are needed to clarify these findings and the underlying causal mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: the Maine–Syracuse Longitudinal Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: the Maine–Syracuse Longitudinal Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: the Maine–Syracuse Longitudinal Study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. E. Crichton, email georgina.crichton@unisa.edu.au

References

Hide All
1. Popkin, BM (2010) Patterns of beverage use across the lifecycle. Physiol Behav 100, 49.
2. Nielsen, SJ & Popkin, BM (2004) Changes in beverage intake between 1977 and 2001. Am J Prev Med 27, 205210.
3. Marriott, BP, Olsho, L, Hadden, L, et al. (2010) Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit Rev Food Sci Nutr 50, 228258.
4. Olsen, NJ & Heitmann, BL (2009) Intake of calorically sweetened beverages and obesity. Obes Rev 10, 6875.
5. Vartanian, LR, Schwartz, MB & Brownell, KD (2007) Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health 97, 667675.
6. Greenwood, DC, Threapleton, DE, Evans, CE, et al. (2014) Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Br J Nutr 112, 725734.
7. Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. Diabetes Care 33, 24772483.
8. O’Connor, L, Imamura, F, Lentjes, MA, et al. (2015) Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia 58, 14741483.
9. Chen, L, Caballero, B, Mitchell, DC, et al. (2010) Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation 121, 23982406.
10. Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121, 13561364.
11. Flegal, KM, Carroll, MD, Kit, BK, et al. (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307, 491497.
12. American Diabetes Association (2015) Statistics about diabetes. http://www.diabetes.org/diabetes-basics/statistics/ (accessed June 2015).
13. van den Berg, E, Dekker, JM, Nijpels, G, et al. (2008) Cognitive functioning in elderly persons with type 2 diabetes and metabolic syndrome: the Hoorn study. Dement Geriatr Cogn Disord 26, 261269.
14. van den Berg, E, Kloppenborg, RP, Kessels, RP, et al. (2009) Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Int J Biochem Biophys Mol Biol 1792, 470481.
15. Elias, MF, Beiser, A, Wolf, PA, et al. (2000) The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch Neurol 57, 808813.
16. Jonker, C, Geerlings, MI & Schmaud, B (2000) Are memory complaints predictive for dementia? A review of clinical and population-based studies. Int J Geriatr Psychiatry 15, 983991.
17. Ye, X, Gao, X, Scott, T, et al. (2011) Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br J Nutr 106, 14231432.
18. Dore, GA, Elias, MF, Robbins, MA, et al. (2008) Relation between central adiposity and cognitive function in the Maine-Syracuse Study: attenuation by physical activity. Ann Behav Med 35, 341350.
19. Elias, MF, Robbins, MA, Budge, MM, et al. (2009) Arterial pulse wave velocity and cognition with advancing age. Hypertension 53, 668673.
20. Elias, MF, Robbins, MA, Budge, MM, et al. (2006) Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: the Maine-Syracuse study. Psychosom Med 68, 547554.
21. Robbins, MA, Elias, MF, Elias, PK, et al. (2005) Blood pressure and cognitive function in an African-American and a Caucasian-American sample: the Maine-Syracuse study. Psychosom Med 67, 707714.
22. McKhann, G, Drachman, D, Folstein, M, et al. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939944.
23. Kaaks, R & Riboli, E (1997) Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26, Suppl. 1, S15S25.
24. Riboli, E & Kaaks, R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26, Suppl. 1, S6S14.
25. Wolf, AM, Hunter, DJ, Colditz, GA, et al. (1994) Reproducibility and validity of a self-administered physical-activity quesionnaire. Int J Epidemiol 23, 991999.
26. Radloff, LS (1977) The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1, 385401.
27. United States Department of Agriculture (2011) MyPyramid. gov (accessed April 2011).
28. Elias, MF, Elias, PK, Seliger, SL, et al. (2009) Chronic kidney disease, creatinine and cognitive functioning. Nephrol Dial Transpl 24, 24462452.
29. Lezak, MD, Howieson, DB & Loring, DW (2004) Neuropsychological Assessment, 4th ed.. New York, NY: Oxford University Press.
30. Folstein, MF, Folstein, SE & McHugh, PR (1975) ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12, 189198.
31. Jaccard, J & Jacoby, J (2010) Theory Construction and Model-building Skills: A Practical Guide for Social Scientists. New York, NY: Guilford Press.
32. National Institute of Diabetes and Digestive and Kidney Diseases (2014) Diagnosis of diabetes and prediabetes. www.niddk.nih.gov (accessed December 2015).
33. Schulze, MB, Manson, JE, Ludwig, DS, et al. (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292, 927934.
34. Block, G (2004) Foods contributing to energy intake in the US: data from NHANES III and NHANES 1999–2000. J Food Compos Anal 17, 439447.
35. US Department of Agriculture (2012) Basic report 14400, carbonated beverage, cola, contains caffeine, fast-food cola. National Nutrient Database for Standard Reference, Release 27. Washington, DC: US Department of Agriculture.
36. Bray, GA (2013) Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr 4, 220225.
37. Mattes, RD & Campbell, WW (2009) Effects of food form and timing of ingestion on appetite and energy intake in lean young adults and in young adults with obesity. J Am Diet Assoc 109, 430437.
38. DiMeglio, DP & Mattes, RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 24, 794800.
39. Raben, A, Vasilaras, TH, Moller, AC, et al. (2002) Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr 76, 721729.
40. Stanhope, KL, Schwarz, JM, Keim, NL, et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.
41. Teff, KL, Grudziak, J, Townsend, RR, et al. (2009) Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab 94, 15621569.
42. Bray, GA, Nielsen, SJ & Popkin, BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79, 537543.
43. Maersk, M, Belza, A, Stodkilde-Jorgensen, H, et al. (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95, 283289.
44. Mungas, D, Cooper, JK, Weiler, PG, et al. (1990) Dietary preference for sweet foods in patients with dementia. J Am Geriatr Soc 38, 9991007.
45. van den Berg, E, Biessels, GJ, de Craen, AJM, et al. (2007) The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology 69, 979985.
46. Kivipelto, M, Ngandu, T, Fratiglioni, L, et al. (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62, 15561560.
47. Gregg, EW, Yaffe, K, Cauley, JA, et al. (2000) Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Arch Intern Med 160, 174180.
48. Yaffe, K, Blackwell, T, Kanaya, AM, et al. (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63, 658663.
49. Munshi, M, Grande, L, Hayes, M, et al. (2006) Cognitive dysfunction is associated with poor diabetes control in older adults. Diabetes Care 29, 17941799.
50. Messier, C (2005) Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol Aging 26, Suppl. 1, 2630.
51. Kodl, CT & Seaquist, ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29, 494511.
52. Kloppenborg, RP, van den Berg, E, Kappelle, LJ, et al. (2007) Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. Eur J Pharmacol 585, 97108.
53. Allen, KV, Frier, BM & Strachan, MW (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 490, 169175.
54. Peila, R, Rodriguez, BL & Launer, LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 51, 12561262.
55. Ott, A, Stolk, RP, van Harskamp, F, et al. (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53, 19371942.
56. Biessels, GJ, Staekenborg, S, Brunner, E, et al. (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5, 6474.
57. Roriz-Filho, JS, Sa-Roriz, TM, Rosset, I, et al. (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792, 432443.
58. Hak, AE, Pols, HA, Stehouwer, CD, et al. (2001) Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly: the Rotterdam study. J Clin Endocrinol Metab 86, 43984405.
59. Hull, M, Strauss, S, Berger, M, et al. (1996) The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer’s disease. Behav Brain Res 78, 3741.
60. Sorensen, LB, Raben, A, Stender, S, et al. (2005) Effect of sucrose on inflammatory markers in overweight humans. Am J Clin Nutr 82, 421427.
61. Lee, ZS, Chan, JC, Yeung, VT, et al. (1999) Plasma insulin, growth hormone, cortisol, and central obesity among young Chinese type 2 diabetic patients. Diabetes Care 22, 14501457.
62. Lupien, S, Lecours, AR, Lussier, I, et al. (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14, 28932903.
63. Akisaki, T, Sakurai, T, Takata, T, et al. (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22, 376384.
64. Lazarus, R, Prettyman, R & Cherryman, G (2005) White matter lesions on magnetic resonance imaging and their relationship with vascular risk factors in memory clinic attenders. Int J Geriatr Psychiatry 20, 274279.
65. den Heijer, T, Vermeer, SE, van Dijk, EJ, et al. (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46, 16041610.
66. Greenwood, CE (2003) Dietary carbohydrate, glucose regulation, and cognitive performance in elderly persons. Nutr Rev 61, S68S74.

Keywords

Type Description Title
WORD
Supplementary materials

Crichton supplementary material
Table S1

 Word (18 KB)
18 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed