Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T23:13:14.926Z Has data issue: false hasContentIssue false

Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen

Published online by Cambridge University Press:  09 March 2007

Jan Dijkstra
Affiliation:
Institute of Grassland and Environmental Research, North Wyke Research Station, Okehampton, Devon EX20 2SB Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Seerp Tamminga
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A previously described mathematical model, that simulates the metabolic activities of rumen bacteria and protozoa, was used to examine the contribution of protozoa to neutral-detergent fibre (NDF) degradation in the rumen of cattle. Comparisons between predicted and experimentally observed NDF degradation showed general agreement. Further simulations were performed with diets containing variable proportions of concentrate (between 0 and 1 kg/kg diet DM) and at intake levels ranging between 5·3 and 21·0 kg DM/d. The simulated protozoal contribution to NDF degradation was 17–21% at the lowest intake level. Except for the all-concentrate diets, raising the feed intake level reduced this contribution to 5–3% at the highest intake level. The changes in contribution of protozoa to NDF degradation were related to variations in the fibrolytic bacteria: protozoa value and the NDF-degrading activities of protozoa predicted by the model. In simulations where dietary NDF levels were reduced and starch and sugar levels were increased independently, protozoal contribution to NDF degradation generally increased. These differences were reflected also in the generally increased protozoal contribution to NDF degradation predicted in response to a decreased roughage:concentrate value. The contribution of protozoa also generally declined in response to added N. These changes in predicted protozoal contribution to NDF degradation resulting from dietary variations provided possible explanations for the differences in rumen NDF degradation observed when animals are defaunated.

Type
Protozoal contribution to fibre degradation
Copyright
Copyright © The Nutrition Society 1995

References

Amos, H. E. & Akin, D. E. (1978) Rumen protozoal degradation of structurally intact forage tissues. Applied and Environmental Microbiology 36, 513522.CrossRefGoogle ScholarPubMed
Bibby, J. & Toutenburg, H. (1977) Prediction and Improved Estimation in Linear Models. London: John Wiley & Sons.Google Scholar
Bosch, M. W., Tamminga, S., Post, G., Leffering, C. P. & Muylaert, J. M. (1992) Influence of stage of maturity of grass silages on digestion processes in dairy cows. 1. Composition, nylon bag degradation rates, fermentation characteristics, digestibility and intake. Livestock Production Science 32, 245264.CrossRefGoogle Scholar
Brock, T. D. (1966) Principles of Microbial Ecology. Englewood Cliffs: Prentice-Hall.Google Scholar
Coleman, G. S. (1975) The interrelationship between rumen ciliate protozoa and bacteria. In Digestion and Metabolism in the Ruminant, pp. 149164 [McDonald, I.W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Coleman, G. S. (1986a) The metabolism of rumen ciliate protozoa. FEMS Microbiological Reviews 39, 321344.CrossRefGoogle Scholar
Coleman, G. S. (1986b) The distribution of carboxylmethylcellulase between fractions taken from the rumens of sheep containing no protozoa or one of five different protozoal populations. Journal of Agricultural Science, Cambridge 106, 121127.CrossRefGoogle Scholar
Coleman, G. S. (1988) The importance of rumen ciliate protozoa in the growth and metabolism of the host ruminant. International Journal of Animal Sciences 3, 7595.Google Scholar
Coleman, G. S. (1989) Protozoal-bacterial interactions in the rumen. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 1327 [Nolan, J. V.Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Coleman, G. S. (1992) The rate of uptake and metabolism of starch grains and cellulose particles by Entodinium species, Eudiplodinium maggii, some other entodiniomorphid protozoa and natural protozoal populations taken from the ovine rumen. Journal of Applied Bacteriology 73, 507513.CrossRefGoogle ScholarPubMed
Demeyer, D. I. (1981) Rumen microbes and digestion of plant cell walls. Agriculture and Environment 6,295337.CrossRefGoogle Scholar
Demeyer, D. I. (1989) Effect of defaunation on rumen fibre digestion and digesta kinetics. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 171179 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Dijkstra, J. (1994) Simulation of the dynamics of protozoa in the rumen. British Journal of Nutrition 72,679699.CrossRefGoogle ScholarPubMed
Dijkstra, J., Neal, H. D., St, C, Beever, D. E. & France, J. (1992) Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.CrossRefGoogle ScholarPubMed
Dijkstra, J., Neal, H. D., St, C, Beever, D. E., Gill, M. & France, J. (1990) Representation of microbial metabolism in a mathematical model of rumen fermentation. In Proceedings of the Third International Workshop on Modelling Digestion and Metabolism in Farm Animals, pp. 4763 [Robson, A.B. and Poppi, D. P., editors]. Lincoln: Lincoln University Press.Google Scholar
France, J. & Thornley, J. H. M. (1984) Mathematical Models in Agriculture, p. 24. London: Butterworths.Google Scholar
Gijzen, H. J., Lubberding, H. L., Gerhardus, M. J. T. & Vogels, G. D. (1988) Contribution of rumen protozoa to fibre degradation and cellulase activity in vitro. FEMS Microbiological Ecology 53, 3544.CrossRefGoogle Scholar
Gill, M., Beever, D. E. & France, J. (1989) Biochemical bases needed for the mathematical representation of whole animal metabolism. Nutrition Research Reviews 2, 181200.CrossRefGoogle ScholarPubMed
Grenet, E., Breton, A., Barry, P. & Fonty, G. (1989) Rumen anaerobic fungi and plant substrates colonization as affected by diet composition. Animal Feed Science and Technology 26, 5570.CrossRefGoogle Scholar
Hidayat, Hillman K. , Hillman K., Newbold, C. J. & Stewart, C. S. (1993) The contributions of bacteria and protozoa to ruminal forage fermentation in vitro, as determined by microbial gas production. Animal Feed Science and Technology 42, 193208.CrossRefGoogle Scholar
Hsu, J. T., Fahey, G. C. Jr, Clark, J. H., Berger, L. L. & Merchen, N. R. (1991) Effects of urea and sodium bicarbonate supplements of a high–fiber diet on nutrient digestion and ruminal characteristics of defaunated sheep. Journal of Animal Science 69, 13001311.CrossRefGoogle ScholarPubMed
Hume, I. D., Moir, R. J. & Somers, M. (1970) Synthesis of microbial protein in the rumen. I. Influence of the level of N–intake. Australian Journal of Agricultural Research 21, 283296.CrossRefGoogle Scholar
Hungate, R. E. (1975) The rumen microbial ecosystem. Annual Review in Ecological Systems 6, 3966.CrossRefGoogle Scholar
Jouany, J. P. (1989) Effects of diet on populations of rumen protozoa in relation to fibre digestion. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 5974. [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Jouany, J. P., Demeyer, D. I. & Grain, J. (1988) Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229265.CrossRefGoogle Scholar
Kayouli, C, Demeyer, D. I., Van Nevel, C. J. & Dendooven, R. (1984) Effect of defaunation on straw digestion in sacco and on particle retention in the rumen. Animal Feed Science and Technology 10, 165172.CrossRefGoogle Scholar
Kayouli, C, Van Nevel, C. J., Dendooven, R. & Demeyer, D. I. (1986) Effect of defaunation and refaunation of the rumen on rumen fermentation and N–flow in the duodenum of sheep. Archives of Animal Nutrition 36, 827837.Google ScholarPubMed
Krebs, G. A., Leng, R. A. & Nolan, J. V. (1989) Microbial biomass and production rates in the rumen of faunated and fauna-free sheep on low protein fibrous feeds with or without nitrogen supplementation. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 295299 [Nolan, J.V., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Kurihara, Y., Takechi, T. & Shibata, F. (1978) Relationship between bacteria and ciliate protozoa in the rumen of sheep fed a purified diet. Journal of Agricultural Science, Cambridge 90, 373381.CrossRefGoogle Scholar
Latham, M. J., Sharpe, E. & Sutton, J. D. (1971) The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to rumen fermentation. Journal of Applied Bacteriology 34, 425434.CrossRefGoogle ScholarPubMed
Leng, R. A. (1982) Dynamics of protozoa in the rumen of sheep. British Journal of Nutrition 48, 399415.CrossRefGoogle ScholarPubMed
Leng, R. A., Nolan, J. V., Cumming, G, Edwards, S. R. & Graham, C. A. (1984) The effects of monensin on the pool size and turnover rate of protozoa in the rumen of sheep. Journal of Agricultural Science, Cambridge 102, 609–13.CrossRefGoogle Scholar
McCarthy, R. D. Jr, Klusmeyer, T. H., Vicini, J. L., Clark, J. H. & Nelson, D. R. (1989) Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. Journal of Dairy Science 72, 20022016.CrossRefGoogle Scholar
Mehrez, A. Z., Orskov, E. R. & McDonald, I. (1977) Rates of rumen fermentation in relation to ammonia concentration. British Journal of Nutrition 38, 437443.CrossRefGoogle ScholarPubMed
Mitchell, E. L. & Gauthier, J. (1981) Advanced Continuous Simulation Language. User Guide/Reference Manual, 3rd ed. Concord: Mitchell and Gauthier Ass.Google Scholar
Nagaraja, T. G., Towne, G. & Beharka, A. A. (1992) Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high–grain diet. Applied and Environmental Microbiology 58, 24102414.CrossRefGoogle ScholarPubMed
Neal, H. D., St, C, Dijkstra, J. & Gill, M. (1992) Simulation of nutrient digestion, absorption and outflow in the rumen: model evaluation. Journal of Nutrition 122, 22572272.CrossRefGoogle ScholarPubMed
Newbold, C. J., Griffin, P. W. & Wallace, R. J. (1989) Interaction between rumen bacteria and ciliate protozoa in their attachment to barley straw. Letters in Applied Microbiology 8, 6366.CrossRefGoogle Scholar
Newbold, C. J. & Hillman, K. (1990) The effect of ciliate protozoa on the turnover of bacterial and fungal protein in the rumen of sheep. Letters in Applied Microbiology 11, 100102.CrossRefGoogle Scholar
Orpin, C. G. & Letcher, A. J. (1984) Effect of absence of ciliate protozoa on rumen fluid volume, flow rate and bacterial populations in sheep. Animal Feed Science and Technology 10, 145153.CrossRefGoogle Scholar
Owens, F. N. & Goetsch, A. L. (1986) Digesta passage and microbial protein synthesis. In Control of Digestion and Metabolism in Ruminants, pp. 196223 [Milligan, L.P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs: Prentice–Hall.Google Scholar
Pirt, S. J. (1965) The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society London, Series B. 163, 224231.Google ScholarPubMed
Prins, R. A. & Van Hoven, W. (1977) Carbohydrate fermentation by the rumen ciliate Isotricha prostoma. Protistologica 13, 549556.Google Scholar
Punia, B. S., Leibholz, J. & Faichney, G. J. (1987) The role of rumen protozoa in the utilization of paspalum (Paspalum dilatatum) hay by cattle. British Journal of Nutrition 57, 395406.CrossRefGoogle ScholarPubMed
Robinson, P. H., Tamminga, S. & Van Vuuren, A. M. (1986) Influence of declining level of feed intake and varying the proportion of starch in the concentrate on rumen fermentation in dairy cows. Livestock Production Science 15, 173189.CrossRefGoogle Scholar
Robinson, P. H., Tamminga, S. & Van Vuuren, A. M. (1987) Influence of declining level of feed intake and varying the proportion of starch in the concentrate on rumen ingesta quantity, composition and kinetics of ingesta turnover in dairy cows. Livestock Production Science 17, 3762.CrossRefGoogle Scholar
Romulo, B., Bird, S. H. & Leng, R. A. (1989) Effects of defaunation and protein supplementation on intake, digestibility, N retention, and fungal numbers in sheep fed straw–based diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 285288 [Nolan, V.J., Leng, R. A. and Demeyer, D. I., editors]. Armidale: Penambul Books.Google Scholar
Russell, J. B. & Dombrowski, D. B. (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39, 604610.CrossRefGoogle ScholarPubMed
Tamminga, S. (1981) Nitrogen and amino acid metabolism in dairy cows. PhD Thesis, Wageningen Agricultural University.Google Scholar
Thornley, J. H. M. & Johnson, I. R. (1990) Plant and Crop Modelling. A Mathematical Approach to Plant and Crop Physiology. Oxford: Clarendon Press.Google Scholar
Towne, G., Nagaraja, T. G., Brandt, R. T. Jr & Kemp, K. (1990) Ruminal ciliated protozoa in cattle fed finishing diets with or without supplemental fat. Journal of Animal Science 68, 21502155.CrossRefGoogle ScholarPubMed
Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. & Theodorou, M. K. (1994) Anaerobic fungi in herbivorous animals. Mycological Research 98, 129152.CrossRefGoogle Scholar
Ushida, K. & Jouany, J. P. (1990) Effect of defaunation on fibre digestion in sheep given two isonitrogenous diets. Animal Feed Science and Technology 29, 153158.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P. & Demeyer, D. I. (1991) Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the 7th International Symposium on Ruminant Physiology, pp. 625654 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. San Diego: Academic Press.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P. & Thivend, P. (1986) Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets. British Journal of Nutrition 56, 407419.CrossRefGoogle ScholarPubMed
Ushida, K., Kayouli, C, De Smet, S. & Jouany, J. P. (1990) Effect of defaunation on protein and fibre digestion in sheep fed on ammonia-treated straw-based diets with or without maize. British Journal of Nutrition 64, 765775.CrossRefGoogle ScholarPubMed
Van Gylswyck, N. O. & Labuschagne, J. P. L. (1971) Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro. Journal of General Microbiology 66, 109113.CrossRefGoogle Scholar
Van Hoven, W. & Prins, R. A. (1977) Carbohydrate fermentation by the rumen ciliate Dasytricha ruminantium. Protistologica 13, 599606.Google Scholar
Van Soest, P. J. (1982) Nutritional Ecology of the Ruminant. Corvallis: O & B Books.Google Scholar
Veira, D. M., Ivan, M. & Jul, P. Y. (1983) Rumen ciliate protozoa: effects on digestion in the stomach of sheep. Journal of Dairy Science 66, 10151022.CrossRefGoogle ScholarPubMed
Williams, A. G. (1986) Rumen holotrich protozoa. Microbiological Reviews 50, 2549.CrossRefGoogle Scholar
Williams, A. G. & Coleman, G. S. (1988) The rumen protozoa. In The Rumen Microbial Ecosystem, pp. 77128 [Hobson, P. N., editor]. London: Elsevier Science Publishers.Google Scholar
Williams, A. G. & Withers, S. E. (1991) Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. Journal of Applied Bacteriology 70, 144155.CrossRefGoogle ScholarPubMed
Yoder, R. D., Trenkle, A. & Burroughs, W. (1966) Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. Journal of Animal Science 25, 609612.CrossRefGoogle ScholarPubMed