Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-14T19:14:31.388Z Has data issue: false hasContentIssue false

Serum protein fractions from children of differing nutritional status analysed by polyacrylamide gel electrophoresis and electroimmunoassay

Published online by Cambridge University Press:  25 March 2008

F. P. Schelp
Affiliation:
Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
P. Migasena
Affiliation:
Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
S. Saovakontha
Affiliation:
Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Praneet Pongpaew
Affiliation:
Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Venus Supawan
Affiliation:
Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The nutritional status of children showing no clinical signs of malnutrition, from the University School of Khon Kaen, Khon Kaen province, north-east Thailand and from two villages nearby, was tested. The children were grouped according to their body-weight expressed as a percentage of expected weight-for-height (Harvard standards (Stuart & Stevenson, 1959), as given by Jelliffe (1966))..

2. The differing prealbumin concentrations indicated that nutritional status differed between the groups..

3. The urinary urea: creatinine ratio was significantly lower in the village children compared with the children from Khon Kaen, indicative of the higher dietary protein intake of the latter..

4. α1-Acid glycoprotein and the first ‘post-albumin peak’ (obtained by polyacrylamide gel electrophoresis of serum and containing mainly Gc-globulin, α1-antichymotrypsin and α1-B-glycoprotein) were found to be significantly higher in the village children compared with children from Khon Kaen..

5. The three main proteins of the first ‘post-albumin peak’ from polyacrylamide gel electrophoresis of serum were tested separately using the electroimmunoassay method. There was no significant difference in Gc-globulin between the children from Khon Kaen and the village children. The concentration of α1-B-glycoprotein from those Khon Kaen children whose body-weight was more than 95% expected weight-for-height was significantly lower compared with that of village children. α1-Antichymotrypsin concentration was significantly higher in serum from Khon Kaen children than in serum from village children.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Allen, R. C. & Moore, D. J. (1966). Analyt. Biochem. 16, 457.CrossRefGoogle Scholar
Alper, C. A. (1974). New Engl. J. Med. 291, 287.CrossRefGoogle Scholar
Aronsen, K. F., Ekelunol, G., Kindmark, C. O. & Laurell, C. B. (1972). Scand. J. clin. Lab.Invest. 29, Suppl.124, 127.Google Scholar
Beckman Instruments Inc. (1962). Technical Bulletin no. 6074D. Fullerton, California: Beckman Instruments Inc.Google Scholar
Campbell, R. C. (1967). Statistics for Biologists. London: Cambridge University Press.Google Scholar
Committee on Procedures for Appraisal of Protein-Calorie Malnutrition (1970). Am. J. clin.Nutr. 23, 807.Google Scholar
Coward, D. G. & Whitehead, R. G. (1972). Br. J. Nutr. 28, 223.Google Scholar
Coward, W. A., Whitehead, R. G. & Coward, D. G. (1972). Br. J. Nutr. 28, 433.Google Scholar
FAO/WHO (1973). Tech. Rep. Ser. Wld Hlth Org. no. 522.Google Scholar
Fayad, I. M., Metwalli, O. M., Shukry, A. S. & Ismail, S. M. (1969). Gaz. Egypt. paediat. Ass. 17, 199.Google Scholar
Felgenhauer, K. (1970). Clinica chim. Acta 27, 305.CrossRefGoogle Scholar
Folin, O. & Wu, H. (1919). J. biol. Chem. 38, 81.Google Scholar
Gornall, A. G., BardawiIl, C. J. & David, M. M. (1949). J. biol. Chem. 177, 751.CrossRefGoogle Scholar
Haellen, J. & Laurell, C. B. (1972). Scand. J. clin. Lab. Invest. 29, Suppl. 124, 97.Google Scholar
Heimburger, M., Heide, K., Haupt, H. & Schultze, H. E. (1964). Clinica chim. Acta 10, 293.CrossRefGoogle Scholar
Hoffmeister, H. (1974). In Serum Proteine [Engelhardt, A. and Lommel, H., editors]. Weinheim, Germany: Verlag Chemie.Google Scholar
Hoffmeister, H. & Schütt, K. H. (1972). Dt. med. Wschr. 97, 1464.Google Scholar
Ingenbleek, Y., de Visscher, M. & de Nayer, Ph. (1972). Lancet ii, 106.Google Scholar
Jelliffe, D. B. (1966). Monograph Ser. W.H.O. no. 53.Google Scholar
Kingsley, G. R. J. (1939). J. biol. Chem. 131, 197.CrossRefGoogle Scholar
Kumar, V., Chase, P., Hammond, K. & O'Brien, D. (1972). Pediatrics, Springfield 49, 739.Google Scholar
Laurell, C. B. (1972). Scand. J. clin. Lab. Invest. 29, Suppl. 124, 21.Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 624.Google Scholar
Maurer, H. R. & Allen, R. C. (1972). Clinica chim. Acta 40, 359.Google Scholar
Migasena, P., Thurnham, D. I., Pongpaew, P., Hongthong, K. & Harinasuta, C. (1974). J. nutr. Sci. Vitam. 20, 127.Google Scholar
Ortec Inc. (1972). Model 4200 Operating and Service Manual. Oak Ridge, Tennessee, USA: Ortec Inc.Google Scholar
Patwardhan, V. N., Maghrabi, R. H., Mousa, W., Gabr, M. K. & El Maraghy, S. (1971). Am. J. clin. Nutr. 24, 906.CrossRefGoogle Scholar
Pongpaew, P., Migasena, P. & Schelp, F. P. (1975). J. med. Ass. Thailand 58, 15.Google Scholar
Prokop, D. & Bundschuh, G. (editors) (1963), In Die Technik und die Bedeutung der Haptoglobine und Gm-Gruppen. Berlin: De Gryter.Google Scholar
Schelp, F. P., Migasena, P., Saovakontha, S. & Pongpaew, P. (1974). J. nutr. Sci. Vitam. 20, 383.Google Scholar
Schultze, H. E., Biel, H., Haupt, H. & Heide, K. (1962). Naturwissenschaften 49, 108.Google Scholar
Schultze, H. E., Heide, K. & Haupt, H. (1962). Naturwissenschaften 49, 133.Google Scholar
Schultze, H. E. & Heremans, J. F. (editors) (1966). In Molecular Biology of Human Proteins, vol. 1. Amsterdam London and New York: Elsevier.Google Scholar
Schwick, H. G. & Heide, K. (1973). Wen. klin. Wschr. 85, 213.Google Scholar
Seoane, N. & Latham, M. C. (1971). J. trop. Pediat. envir. Child Hlth 17, 98.CrossRefGoogle Scholar
Shehata, A. H., Abdel Hay, A., Kamel, G., Fayad, I. & Talaat, M. (1965). J. Endocr. Metab., Egypt 11, 33.Google Scholar
Simmons, W. K. (1972). Am. J. clin. Nutr. 25, 539.Google Scholar
Stuart, H. C. & Stevenson, S. S. (1959). In Textbook of Pediatrics, 7th ed. [ Nelson, W., editor]. Philadelphia: W. B. Saunders Company.Google Scholar
Technicon Instruments Corporation (1972 a). Technicon Method Sheet N-11b. Tarry Town, New York: Technicon Instruments Corporation.Google Scholar
Technicon Instruments Corporation (1972 b). Technicon Method Sheet 11–01. Tarry Town, New York: Technicon Instruments Corporation.Google Scholar
Waterlow, J. C. (1972). Br. med. J. iii, 566.Google Scholar
Weimer, H. E. & Hummelbaugh, C. (1965). Proc. Soc. exp. Biol. Med. 118, 842.Google Scholar
Weimer, H. E. & Nishihara, H. (1959). J. Nutr. 67, 137.Google Scholar
Whitehead, R. G. & Alleyne, G. A. O. (1972). Br. med. Bull. 28, 72.Google Scholar