Skip to main content Accessibility help
×
Home

Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth

  • Cristina Santos (a1), Eduardo García-Fuentes (a2) (a3), Belén Callejón-Leblic (a4), Tamara García-Barrera (a4) (a5), José Luis Gómez-Ariza (a4) (a5), Margaret P. Rayman (a6) and Inés Velasco (a5) (a7)...

Abstract

The deficiency of Se, an essential micronutrient, has been implicated in adverse pregnancy outcomes. Our study was designed to determine total serum Se, selenoproteins (extracellular glutathione peroxidase (GPx-3), selenoprotein P (SeP)), selenoalbumin (SeAlb) and selenometabolites in healthy women and their newborns at delivery. This cross-sectional study included eighty-three healthy mother–baby couples. Total Se and Se species concentrations were measured in maternal and umbilical cord sera by an in-series coupling of two-dimensional size-exclusion and affinity HPLC. Additional measurements of serum SeP concentration and of serum GPx-3 enzyme activity were carried out using ELISA. Total Se concentration was significantly higher in maternal serum than in cord serum (68·9 (sd 15·2) and 56·1 (sd 14·6) µg/l, respectively; P<0·01). There were significant correlations between selenoprotein and SeAlb concentrations in mothers and newborns, although they also showed significant differences in GPx-3 (11·2 (sd 3·7) v. 10·5 (sd 3·5) µg/l; P<0·01), SeP (42·5 (sd 9·5) v. 28·1 (sd 7·7) µg/l; P<0·01) and SeAlb (11·6 (sd 3·6) v. 14·1 (sd 4·3) µg/l; P<0·01) concentrations in maternal and cord sera, respectively. Serum GPx-3 activity and concentration were positively correlated in mothers (r 0·33; P=0·038) but not in newborns. GPx-3 activity in cord serum was significantly correlated with gestational age (r 0·44; P=0·009). SeAlb concentration was significantly higher in babies, whereas SeP and GPx-3 concentrations were significantly higher in mothers. The differences cannot be explained by simple diffusion; specific transfer mechanisms are probably involved. GPx-3 concentrations in mothers, at delivery, are related to maternal Se status, whereas the GPx-3 activity in cord serum depends on gestational age.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth
      Available formats
      ×

Copyright

Corresponding author

* Corresponding authors: E. García-Fuentes, email edugf1@gmail.com; Dr I. Velasco, fax +34 959 025 347, email inesvelas@msn.com

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Duntas, LH & Benvenga, S (2015) Selenium: an element for life. Endocrine 48, 756775.
2. Pieczyńska, J & Grajeta, H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29, 3138.
3. Rayman, MP, Bode, P & Redman, CW (2003) Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 189, 13431349.
4. Rayman, MP, Wijnen, H, Vader, H, et al. (2011) Maternal selenium status during early gestation and risk for preterm birth. Can Med Assoc J 183, 549555.
5. Burk, RF, Olson, GE, Hill, KE, et al. (2013) Maternal-fetal transfer of selenium in the mouse. FASEB J 27, 32493256.
6. Nandakumaran, M, Dashti, HM, Al-Saleh, E, et al. (2003) Transport kinetics of zinc, copper, selenium, and iron in perfused human placental lobule in vitro . Mol Cell Biochem 252, 9196.
7. Miyauchi, S, Srinivas, SR, Fei, YJ, et al. (2006) Functional characteristics of NaS2, a placenta-specific Na+-coupled transporter for sulfate and oxyanions of the micronutrients selenium and chromium. Placenta 27, 550559.
8. Jariwala, M, Suvarna, S, Kiran Kumar, G, et al. (2014) Study of the concentration of trace elements Fe, Zn, Cu, Se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochem 29, 181188.
9. Bermúdez, L, García-Vicent, C, López, J, et al. (2015) Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med 13, 291.
10. Özdemir, HS, Karadas, F, Pappas, AC, et al. (2008) The selenium levels of mothers and their neonates using hair, breast milk, meconium, and maternal and umbilical cord blood in Van Basin. Biol Trace Elem Res 122, 206215.
11. Rayman, MP. (2012) Selenium and human health. Lancet 379, 12561268.
12. Fairweather-Tait, SJ, Collings, R & Hurst, R (2010) Selenium bioavailability: current knowledge and future research. Am J Clin Nutr 91, 1484S1491S.
13. Combs, GF, Watts, JC, Jackson, MI, et al. (2011) Determinants of selenium status in healthy adults. Nutr J 10, 75.
14. Gladyshev, VN, Arnér, ES, Berry, MJ, et al. (2016) Selenoprotein gene nomenclature. J Biol Chem 291, 2403624040.
15. Burk, RF & Hill, KE (2009) Selenoprotein P – expression, functions, and roles in mammals. Biochim Biophys Acta 1790, 14411447.
16. Xu, X, Leng, JY, Gao, F, et al. (2014) Differential expression and anti-oxidant function of glutathione peroxidase 3 in mouse uterus during decidualization. FEBS Lett 588, 15801589.
17. García-Sevillano, MA, García-Barrera, T & Gómez-Ariza, JL (2013) Development of a new column switching method for simultaneous speciation of selenometabolites and selenoproteins in human serum. J Chromatogr A 1318, 171179.
18. European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) (2014) Scientific opinion on dietary reference values for selenium. EFSA J 12, 3846.
19. Jitaru, P, Roman, M, Barbante, C, et al. (2010) Challenges in the accurate speciation analysis of selenium in humans: first report on indicative levels of selenoproteins in a serum certified reference material for total selenium (BCR-637). Accred Qual Assur 15, 343350.
20. Bermúdez, L, García-Vicent, C, López, J, et al. (2015) Assessment of ten trace elements in umbilical cord and maternal blood: association with birth weight. J Transl Med 13, 291.
21. Mariath, AB, Bergamaschi, DP, Rondó, PHC, et al. (2011) The possible role of selenium status in adverse pregnancy outcomes. Br J Nutr 105, 14181428.
22. Makhoul, IR, Sammour, RN, Diamond, E, et al. (2004) Selenium concentrations in maternal and umbilical cord blood at 24–42 weeks of gestation: basis for optimization of selenium supplementation to premature infants. Clin Nutr 23, 373381.
23. Katzer, D, Mueller, A, Welzing, L, et al. (2015) Antioxidative status and oxidative stress in the fetal circulation at birth: the effects of time of delivery and presence of labor. Early Hum Dev 91, 119124.
24. Nogales, F, Ojeda, ML, Fenutría, M, et al. (2013) Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 146, 659667.
25. Rayman, MP, Bath, SC, Westaway, J, et al. (2015) Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy. Br J Nutr 113, 249258.
26. Izquierdo Alvarez, S, Castañón, SG, et al. (2007) Updating of normal levels of copper, zinc and selenium in serum of pregnant women. J Trace Elem Med Biol 21, 4952.
27. Combs, GF Jr (2015) Biomarkers of selenium status. Nutrients 7, 22092236.
28. Méplan, C, Crosley, LK, Nicol, F, et al. (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21, 30633074.
29. Millán-Adame, E, Florea, D, Sáez Pérez, L, et al. (2012) Deficient selenium status of a healthy adult Spanish population. Nutr Hosp 27, 524528.
30. Stranges, S, Laclaustra, M, Ji, C, et al. (2010) Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr 140, 8187.
31. Matos-Reyes, MN, Cervera, ML, Campos, RC, et al. (2010) Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chem 122, 188194.
32. Sánchez, C, López-Jurado, M, Aranda, P, et al. (2010) Plasma levels of copper, manganese and selenium in an adult population in southern Spain: influence of age, obesity and lifestyle factors. Sci Total Environ 408, 10141020.
33. Moreda-Piñeiro, J, Moreda-Piñeiro, JA & Bermejo-Barrera, P (2017) In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff. Crit Rev Food Sci Nutr 57, 805833.
34. Al-Saleh, I, Al-Rouqi, R, Angela, C, et al. (2015) Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int J Hyg Environ Health 218, 6690.
35. Chen, Z, Myers, R, Wei, T, et al. (2014) Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol 24, 537544.
36. Yang, X, Bao, Y, Fu, H, et al. (2014) Selenium protects neonates against neurotoxicity from prenatal exposure to manganese. PLOS ONE 9, e86611.
37. Anan, Y, Ogra, Y, Somekawa, L, et al. (2009) Effects of chemical species of selenium on maternal transfer during pregnancy and lactation. Life Sci 84, 8893.
38. Darlow, BA, Inder, TE, Graham, PJ, et al. (1995) The relationship of selenium status to respiratory outcome in the very low birth. Pediatrics 96, 314319.
39. Taylor, AE, Keevil, B & Huhtaniemi, IT (2015) Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol 173, D1D12.
40. Yang, SJ, Hwang, SY, Choi, HY, et al. (2011) Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: implications for insulin resistance, inflammation, and atherosclerosis. J Clin Endocrinol Metab 96, E1325E1329.
41. Ballihaut, G, Kilpatrick, LE, Kilpatrick, EL, et al. (2012) Multiple forms of selenoprotein P in a candidate human plasma standard reference material. Metallomics 4, 533538.
42. Akesson, B, Bellew, T & Burk, RF (1994) Purification of selenoprotein P from human plasma. Biochim Biophys Acta 1204, 243249.
43. Hybsier, S, Schulz, T, Wu, Z, et al. (2017) Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol 11, 403414.

Keywords

Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth

  • Cristina Santos (a1), Eduardo García-Fuentes (a2) (a3), Belén Callejón-Leblic (a4), Tamara García-Barrera (a4) (a5), José Luis Gómez-Ariza (a4) (a5), Margaret P. Rayman (a6) and Inés Velasco (a5) (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed